Fahamu kuhusu kada ya biotechnology (bioteknolojia) na majukumu ya wataalamu wa bioteknolojia

Fahamu kuhusu kada ya biotechnology (bioteknolojia) na majukumu ya wataalamu wa bioteknolojia

Dyf

Senior Member
Joined
Feb 2, 2016
Posts
185
Reaction score
150
Utangulizi
Bioteknolojia ni aina ya teknolojia inayotumia elimu ya biolojia kwa manufaa ya binadamu. Ni teknolojia ya uvumbuzi wa mambo mbalimbali kwa manufaa ya binadamu, kwenye upande wa afya, kilimo, mazingira na viwanda na ilianza kutumika tangu mwaka . 1919 na mwanasayansi mjerumani aitwae Karl Ereky ikiwa na makampuni (biotech companies) zaidi ya 2300 USA, zaidi ya makampuni 100 India, Canada, China, Ujerumani, Italia hadi afrika ya kusini. Watalamu wa bioteknolojia wanazalishwa na vyuo vingi duniani kwa sababu ni uwanja (field) inayokua kwa kasi sana kutokana na uhitaji wake kua mkubwa.

Mtalamu wa bioteknolojia ameandaliwa kua mtafiti katika sayansi ya maisha (Life Science) huyu ndie anaeleta utatuzi katika maeneo mbalimbali hasa afya ya mwanadamu, uvumbuzi wake unatumika katika kuboesha mbinu za matibabu, mbinu za upimaji magonjwa, nk kwa sababu ni mwanasayansi pekee aliesoma sayansi katika ngazi ya MOLEKULI (MOLECULAR LEVEL).

Historia fupi
Hizi ni mifano michache kati ya maelfu ya uvumbuzi katika bioteknolojia:

1928 Alexander Fleming aligundua fangasi (fungi) wanaoweza kuzuia ukuaji au kuua bakteria. Dawa zote za penisilini kama amoxicillin, ampicillin, nk. zimetokana na uvumbuzi wake.

1944 Kary Mullis aligundua mbinu iitwayo Polymerase chain reaction (PCR) inayotumika kupimia magonjwa mbalimbali mfano . COVID 19, HIV, Hepatitis B, Dengue, na mengine mengi, mbinu hii ni ukombozi wa dunia katika afya ya mwanadamu kutokana na ufanisi wake.

1978 Insulini bandia (artificial insulin) iligunduliwa na mtalamu wa bioteknolojia na mpaka leo wagonjwa wa kisukari (diabetic patients with hyperglycemia) wanaitumia duniani kote kushusha kiwango cha sukari kwenye damu.

1950 Alec john Jeffreys alivumbua mbinu ya kumtambua binadamu au viumbe wengine kwa kutumia vinasaba (DNA) mbinu inafahamika kitalamu kama genetic fingerprinting and DNA profiling ambayo inatumika dunia nzima na watu wa usalama kama polisi kuwatambua wahalifu mfano F.B.I marekani wako vizuri sana katika hili.

Majukumu ya mtalamu wa bioteknolojia kwa upande wa afya.

Kubuni mbinu mpya za upimaji wa magonjwa, zenye ufanisi mkubwa na zinazoweza kugundua maambukizi ya muda mfupi sana mfano Polymerase chain reaction (PCR) na vipimo vya haraka (Rapid tesk kits). Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.

Kugundua na kuzalisha dawa na kinga/chanjo (Vaccine) za magonjwa mbalimbali. Ugunduzi wa madawa na chanjo ni mchakato mrefu wa tafiti na majaribio ya maabara, na si jukumu la tabibu (daktari), ni jukumu la wana bioteknolojia (Laboratory scientists, waliosomea tafiti).

Utengenezaji wa hataki (Reagents) za maabara zinazotumika kupimia magonjwa katika maabara za binadamu na wanyama (clinical laboratory reagents). Mfano monoclonal antibodies and enzymes. Serikali inatumia pesa nyingi sana kununua hizi hataki kutoka nje ya nchi.

Kuzuia tatizo la aleji kwa kufanya uoanishaji wa dawa na genetiki ya mgonjwa (Pharmacogenetics/ personalized medicine). Wagonjwa wengi wanapewa dawa ambazo zinawaletea madhara (aleji) kutokana na kutokujua nani anapaswa kupewa dawa gani kulingana na asili ya miili yao. Hapa biotechnologist anasimama kama mshauri wa daktari kabla ya kumpatia dawa mgonjwa.

Wapo wagonjwa wanatibiwa bila kupona (Infectious diseases), kitalamu tatizo hili linajulikana kama drug resistance. Tatizo la usugu linatatulika kwa mbinu za kibioteknolojia mfano DNA sequencing and alignment na uoteshaji wa vimelea vya magonjwa (bakteria na fangasi) maabara kisha kuangalia vinaweza kufa kwa dawa gani (microbial culture), na kupima wingi wa vimerea katika mwili mfano HIV viral load tests (HVL) na early infant diagnosis (EID).

Kufanya shughuli zote za vinasaba (DNA au RNA), ikiwa ni pamoja na kutibu magonjwa kwa njia za jenetiki, (gene therapy), kumechi kati ya mzazi na mtoto, au ndugu na ndugu kupitia DNA. Hii inaondoa utata katika kujua nani ni mzazi wa nani au nani ni ndugu wa nani mfano janga la moto la msanvu morogoro.

Kufanya tafiti za afya ya binadamu na kutoa elimu kwa watumishi wa afya / kutoa ripoti za tafiti kwa watumishi wengine wa wizara za afya. (Madaktari, nk).

Mgawanyiko wa majukumu baina ya watumishi wa wizara ya afya:

WATAFITI (researchers)
: Hili ndilo kundi la kwanza linalotoa majawabu na mbinu mpya za kupambana na magonjwa mbalimbali, hili ni kundi la wanasayansi waliobobea katika maeneo mbalimbali (classified scientists) mfano: Microbiologists, Molecular biologists, biochemists, chemists(Pharmacists), Immunologists, Bioinformaticians, Bio Statisticians, epidemiologists, Physicist and Botanists. Unaposema Biotechnologist ni mwanasayansi alieandaliwa katika maeneo yote tajwa, hivyo anauwezo mkubwa sana katika kufanya tafiti.

NB: Katika eneo la madawa mfamasia (Pharmacist) amebobea sana katika kemia ya madawa, hivyo hufanya kazi na mtaalamu wa biolojia na fizikia katika uvumbuzi. Biotechnologists wanaweza fanya kazi zote za maabara ya binadamu (clinical laboratory activities), ila ni kuanzia hatua ya uchakataji wa sampuli na si kuanzia hatua ya kuonana na mgonjwa moja kwa moja japo baadhi ya vyuo katika mitaala yao vinawaongezea mafunzo ya kuwahudumia wagonjwa moja kwa moja.

WATOA HUDUMA ZA AFYA (Medical personel):
Hili ni kundi la watalamu wa afya walioandaliwa mahususi kwa ajili ya kutoa huduma za afya moja kwa moja kwa mgonjwa, watalamu hawa wanategemea moja kwa moja majibu na mbinu kutoka kwa watafiti ili kuzitumia katika kutibu wagonjwa.

Daktari (Medical doctor),
Huyu amefundishwa masomo mbalimbali yaliyopatikana kutokana na tafiti za wanasayansi mbalimbali tajwa hapo juu. Daktari wa binadamu si mtafiti/mvumbuzi, ameandaliwa kumtibu mgonjwa kwa kutumia mbinu zilizopitishwa na kukubalika baada ya tafiti mbalimbali. Na ni daktari pekee ndie anaejua namna ya kumtibu mgonjwa kwa kuzingatia kanuni na taratibu zote za jinsi ya kutibu ili kuokoa maisha. Kitalamu ni daktari pekee ndie amebobea katika kutibu ila si kutafiti na kufanya uvumbuzi isipokua yule alie specialize katika research na kuachana na kutibu moja kwa moja.

Mteknolojia wa maabara ya binadamu (medical laboratory technologist):
Hili ni kundi la watalamu walioandaliwa kwaajili ya kufanya upimaji wa magonjwa mbalimbali ya binadamu (diseases diagnosis), hawa pia ni unclassified scientists hawajaandaliwa kua wavumbuzi au watafiti, wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.

Muuguzi (Nurse):
Hili ni kundi la wataalamu walioandaliwa kuwatibu wagonjwa kwa kufuata maagizo au kujadiliana na daktari, kufanya uangalizi wa wagonjwa muda wote, kufuatilia hali zao na mabadiliko yeyote pindi wanapokua wakipatiwa matibabu, hawa ni watu muhimu sana.

NB: Kundi la kwanza la watafiti ni kundi ambalo hua halijulikani licha ya kua na mchango mkubwa sana katika kufanikisha matibabu ya mgonjwa, kwa sababu Daktari ndie mtu wa mwisho mtoa maamuzi hivyo jamii inampa nafasi kubwa sana na kufikiri ndie anaejua kila kitu, na hata kufikiri mchakato wa upatikanaji wa dawa mpya au chanjo ni jukumu lake kitu ambacho sio kweli na kwamba hilo ni jukumu la watafiti.

Changamoto iliyopo Tanzania kwa wataalamu wa Bioteknolojia(WATAFITI).
Wizara ya afya haitambui uwepo wa wataalamu hawa, ambao ni kitovu cha tafiti za afya duniani kote. Wizara ya afya haijawapatia nafasi ya kufanya kazi zao katika maeneo yao, Wizara haijawapatia leseni za kufanya kazi zao. Hakuna mfumo wa kuwatambulisha moja kwa moja.

Vipimo vinavyohusisha vinasaba (DNA /RNA) Tanzania havifanywi na watalamu wa bioteknolojia ambao ndio walioandaliwa kufanya vipimo hivyo na wizara ya afya haitaki kuwaona wakifanya kazi katika maabara za binandamu licha ya kua na uwezo wa kufanya hivyo na bado haitoi ufafanuzi wakafanye kazi zao wapi.

Hitimisho:
Ni jukumu la wizara ya afya Tanzaia kuwapatia leseni wataalamu wa bioteknolojia ili watatue changamoto za wizara ya afya katika utoaji wa huduma za afya kama ambavyo dunia nzima inawatumia vizuri. Tubadilike na teknolojia

ALIANDIKA
Modern Scientist :
Moshi RN Contact : 0758406251 Email moshingamba@gmail.com
 
Mkuu nichambulie biomedical engineering

Biomedical Engineering ni kada ambayo kwa Tz inajihusisha kutengeneza wataalamu kwa ajili ya vifaa tiba..kufanya repair,maintenance na training on mashine kama xray,ultrasound na mitambo mikubwa inayotumika hospitalini..kada hii inatolewa kwa diploma na Degree hapa Tz katka vyuo vya Ufundi...


Sent from my iPhone using JamiiForums
 
Utangulizi
Bioteknolojia ni aina ya teknolojia inayotumia elimu ya biolojia kwa manufaa ya binadamu. Ni teknolojia ya uvumbuzi wa mambo mbalimbali kwa manufaa ya binadamu, kwenye upande wa afya, kilimo, mazingira na viwanda na ilianza kutumika tangu mwaka . 1919 na mwanasayansi mjerumani aitwae Karl Ereky ikiwa na makampuni (biotech companies) zaidi ya 2300 USA, zaidi ya makampuni 100 India, Canada, China, Ujerumani, Italia hadi afrika ya kusini. Watalamu wa bioteknolojia wanazalishwa na vyuo vingi duniani kwa sababu ni uwanja (field) inayokua kwa kasi sana kutokana na uhitaji wake kua mkubwa.

Mtalamu wa bioteknolojia ameandaliwa kua mtafiti katika sayansi ya maisha (Life Science) huyu ndie anaeleta utatuzi katika maeneo mbalimbali hasa afya ya mwanadamu, uvumbuzi wake unatumika katika kuboesha mbinu za matibabu, mbinu za upimaji magonjwa, nk kwa sababu ni mwanasayansi pekee aliesoma sayansi katika ngazi ya MOLEKULI (MOLECULAR LEVEL).

Historia fupi
Hizi ni mifano michache kati ya maelfu ya uvumbuzi katika bioteknolojia:

1928 Alexander Fleming aligundua fangasi (fungi) wanaoweza kuzuia ukuaji au kuua bakteria. Dawa zote za penisilini kama amoxicillin, ampicillin, nk. zimetokana na uvumbuzi wake.

1944 Kary Mullis aligundua mbinu iitwayo Polymerase chain reaction (PCR) inayotumika kupimia magonjwa mbalimbali mfano . COVID 19, HIV, Hepatitis B, Dengue, na mengine mengi, mbinu hii ni ukombozi wa dunia katika afya ya mwanadamu kutokana na ufanisi wake.

1978 Insulini bandia (artificial insulin) iligunduliwa na mtalamu wa bioteknolojia na mpaka leo wagonjwa wa kisukari (diabetic patients with hyperglycemia) wanaitumia duniani kote kushusha kiwango cha sukari kwenye damu.

1950 Alec john Jeffreys alivumbua mbinu ya kumtambua binadamu au viumbe wengine kwa kutumia vinasaba (DNA) mbinu inafahamika kitalamu kama genetic fingerprinting and DNA profiling ambayo inatumika dunia nzima na watu wa usalama kama polisi kuwatambua wahalifu mfano F.B.I marekani wako vizuri sana katika hili.

Majukumu ya mtalamu wa bioteknolojia kwa upande wa afya.

Kubuni mbinu mpya za upimaji wa magonjwa, zenye ufanisi mkubwa na zinazoweza kugundua maambukizi ya muda mfupi sana mfano Polymerase chain reaction (PCR) na vipimo vya haraka (Rapid tesk kits). Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.

Kugundua na kuzalisha dawa na kinga/chanjo (Vaccine) za magonjwa mbalimbali. Ugunduzi wa madawa na chanjo ni mchakato mrefu wa tafiti na majaribio ya maabara, na si jukumu la tabibu (daktari), ni jukumu la wana bioteknolojia (Laboratory scientists, waliosomea tafiti).

Utengenezaji wa hataki (Reagents) za maabara zinazotumika kupimia magonjwa katika maabara za binadamu na wanyama (clinical laboratory reagents). Mfano monoclonal antibodies and enzymes. Serikali inatumia pesa nyingi sana kununua hizi hataki kutoka nje ya nchi.

Kuzuia tatizo la aleji kwa kufanya uoanishaji wa dawa na genetiki ya mgonjwa (Pharmacogenetics/ personalized medicine). Wagonjwa wengi wanapewa dawa ambazo zinawaletea madhara (aleji) kutokana na kutokujua nani anapaswa kupewa dawa gani kulingana na asili ya miili yao. Hapa biotechnologist anasimama kama mshauri wa daktari kabla ya kumpatia dawa mgonjwa.

Wapo wagonjwa wanatibiwa bila kupona (Infectious diseases), kitalamu tatizo hili linajulikana kama drug resistance. Tatizo la usugu linatatulika kwa mbinu za kibioteknolojia mfano DNA sequencing and alignment na uoteshaji wa vimelea vya magonjwa (bakteria na fangasi) maabara kisha kuangalia vinaweza kufa kwa dawa gani (microbial culture), na kupima wingi wa vimerea katika mwili mfano HIV viral load tests (HVL) na early infant diagnosis (EID).

Kufanya shughuli zote za vinasaba (DNA au RNA), ikiwa ni pamoja na kutibu magonjwa kwa njia za jenetiki, (gene therapy), kumechi kati ya mzazi na mtoto, au ndugu na ndugu kupitia DNA. Hii inaondoa utata katika kujua nani ni mzazi wa nani au nani ni ndugu wa nani mfano janga la moto la msanvu morogoro.

Kufanya tafiti za afya ya binadamu na kutoa elimu kwa watumishi wa afya / kutoa ripoti za tafiti kwa watumishi wengine wa wizara za afya. (Madaktari, nk).

Mgawanyiko wa majukumu baina ya watumishi wa wizara ya afya:

WATAFITI (researchers)
: Hili ndilo kundi la kwanza linalotoa majawabu na mbinu mpya za kupambana na magonjwa mbalimbali, hili ni kundi la wanasayansi waliobobea katika maeneo mbalimbali (classified scientists) mfano: Microbiologists, Molecular biologists, biochemists, chemists(Pharmacists), Immunologists, Bioinformaticians, Bio Statisticians, epidemiologists, Physicist and Botanists. Unaposema Biotechnologist ni mwanasayansi alieandaliwa katika maeneo yote tajwa, hivyo anauwezo mkubwa sana katika kufanya tafiti.

NB: Katika eneo la madawa mfamasia (Pharmacist) amebobea sana katika kemia ya madawa, hivyo hufanya kazi na mtaalamu wa biolojia na fizikia katika uvumbuzi. Biotechnologists wanaweza fanya kazi zote za maabara ya binadamu (clinical laboratory activities), ila ni kuanzia hatua ya uchakataji wa sampuli na si kuanzia hatua ya kuonana na mgonjwa moja kwa moja japo baadhi ya vyuo katika mitaala yao vinawaongezea mafunzo ya kuwahudumia wagonjwa moja kwa moja.

WATOA HUDUMA ZA AFYA (Medical personel):
Hili ni kundi la watalamu wa afya walioandaliwa mahususi kwa ajili ya kutoa huduma za afya moja kwa moja kwa mgonjwa, watalamu hawa wanategemea moja kwa moja majibu na mbinu kutoka kwa watafiti ili kuzitumia katika kutibu wagonjwa.

Daktari (Medical doctor),
Huyu amefundishwa masomo mbalimbali yaliyopatikana kutokana na tafiti za wanasayansi mbalimbali tajwa hapo juu. Daktari wa binadamu si mtafiti/mvumbuzi, ameandaliwa kumtibu mgonjwa kwa kutumia mbinu zilizopitishwa na kukubalika baada ya tafiti mbalimbali. Na ni daktari pekee ndie anaejua namna ya kumtibu mgonjwa kwa kuzingatia kanuni na taratibu zote za jinsi ya kutibu ili kuokoa maisha. Kitalamu ni daktari pekee ndie amebobea katika kutibu ila si kutafiti na kufanya uvumbuzi isipokua yule alie specialize katika research na kuachana na kutibu moja kwa moja.

Mteknolojia wa maabara ya binadamu (medical laboratory technologist):
Hili ni kundi la watalamu walioandaliwa kwaajili ya kufanya upimaji wa magonjwa mbalimbali ya binadamu (diseases diagnosis), hawa pia ni unclassified scientists hawajaandaliwa kua wavumbuzi au watafiti, wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.

Muuguzi (Nurse):
Hili ni kundi la wataalamu walioandaliwa kuwatibu wagonjwa kwa kufuata maagizo au kujadiliana na daktari, kufanya uangalizi wa wagonjwa muda wote, kufuatilia hali zao na mabadiliko yeyote pindi wanapokua wakipatiwa matibabu, hawa ni watu muhimu sana.

NB: Kundi la kwanza la watafiti ni kundi ambalo hua halijulikani licha ya kua na mchango mkubwa sana katika kufanikisha matibabu ya mgonjwa, kwa sababu Daktari ndie mtu wa mwisho mtoa maamuzi hivyo jamii inampa nafasi kubwa sana na kufikiri ndie anaejua kila kitu, na hata kufikiri mchakato wa upatikanaji wa dawa mpya au chanjo ni jukumu lake kitu ambacho sio kweli na kwamba hilo ni jukumu la watafiti.

Changamoto iliyopo Tanzania kwa wataalamu wa Bioteknolojia(WATAFITI).
Wizara ya afya haitambui uwepo wa wataalamu hawa, ambao ni kitovu cha tafiti za afya duniani kote. Wizara ya afya haijawapatia nafasi ya kufanya kazi zao katika maeneo yao, Wizara haijawapatia leseni za kufanya kazi zao. Hakuna mfumo wa kuwatambulisha moja kwa moja.

Vipimo vinavyohusisha vinasaba (DNA /RNA) Tanzania havifanywi na watalamu wa bioteknolojia ambao ndio walioandaliwa kufanya vipimo hivyo na wizara ya afya haitaki kuwaona wakifanya kazi katika maabara za binandamu licha ya kua na uwezo wa kufanya hivyo na bado haitoi ufafanuzi wakafanye kazi zao wapi.

Hitimisho:
Ni jukumu la wizara ya afya Tanzaia kuwapatia leseni wataalamu wa bioteknolojia ili watatue changamoto za wizara ya afya katika utoaji wa huduma za afya kama ambavyo dunia nzima inawatumia vizuri. Tubadilike na teknolojia

ALIANDIKA
Modern Scientist :
Moshi RN Contact : 0758406251 Email moshingamba@gmail.com
Mkuu orodhesha watalaamu wanao husika kwenye uvumbuzi wa madawa acha siasa, kwa mimi ninavyo elewa kwenye uvumbuzi wa madawa kuna hawa watu Biochemist, medicinal chemist, organic chemist, pharmacist, na watu wa molecular biology. Kwasababu hayo madawa ni ma organic compound biotechnology hizo reaction hawezi kuzielewa bila hao wakemia hapo
 
Utangulizi
Bioteknolojia ni aina ya teknolojia inayotumia elimu ya biolojia kwa manufaa ya binadamu. Ni teknolojia ya uvumbuzi wa mambo mbalimbali kwa manufaa ya binadamu, kwenye upande wa afya, kilimo, mazingira na viwanda na ilianza kutumika tangu mwaka . 1919 na mwanasayansi mjerumani aitwae Karl Ereky ikiwa na makampuni (biotech companies) zaidi ya 2300 USA, zaidi ya makampuni 100 India, Canada, China, Ujerumani, Italia hadi afrika ya kusini. Watalamu wa bioteknolojia wanazalishwa na vyuo vingi duniani kwa sababu ni uwanja (field) inayokua kwa kasi sana kutokana na uhitaji wake kua mkubwa.

Mtalamu wa bioteknolojia ameandaliwa kua mtafiti katika sayansi ya maisha (Life Science) huyu ndie anaeleta utatuzi katika maeneo mbalimbali hasa afya ya mwanadamu, uvumbuzi wake unatumika katika kuboesha mbinu za matibabu, mbinu za upimaji magonjwa, nk kwa sababu ni mwanasayansi pekee aliesoma sayansi katika ngazi ya MOLEKULI (MOLECULAR LEVEL).

Historia fupi
Hizi ni mifano michache kati ya maelfu ya uvumbuzi katika bioteknolojia:

1928 Alexander Fleming aligundua fangasi (fungi) wanaoweza kuzuia ukuaji au kuua bakteria. Dawa zote za penisilini kama amoxicillin, ampicillin, nk. zimetokana na uvumbuzi wake.

1944 Kary Mullis aligundua mbinu iitwayo Polymerase chain reaction (PCR) inayotumika kupimia magonjwa mbalimbali mfano . COVID 19, HIV, Hepatitis B, Dengue, na mengine mengi, mbinu hii ni ukombozi wa dunia katika afya ya mwanadamu kutokana na ufanisi wake.

1978 Insulini bandia (artificial insulin) iligunduliwa na mtalamu wa bioteknolojia na mpaka leo wagonjwa wa kisukari (diabetic patients with hyperglycemia) wanaitumia duniani kote kushusha kiwango cha sukari kwenye damu.

1950 Alec john Jeffreys alivumbua mbinu ya kumtambua binadamu au viumbe wengine kwa kutumia vinasaba (DNA) mbinu inafahamika kitalamu kama genetic fingerprinting and DNA profiling ambayo inatumika dunia nzima na watu wa usalama kama polisi kuwatambua wahalifu mfano F.B.I marekani wako vizuri sana katika hili.

Majukumu ya mtalamu wa bioteknolojia kwa upande wa afya.

Kubuni mbinu mpya za upimaji wa magonjwa, zenye ufanisi mkubwa na zinazoweza kugundua maambukizi ya muda mfupi sana mfano Polymerase chain reaction (PCR) na vipimo vya haraka (Rapid tesk kits). Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.

Kugundua na kuzalisha dawa na kinga/chanjo (Vaccine) za magonjwa mbalimbali. Ugunduzi wa madawa na chanjo ni mchakato mrefu wa tafiti na majaribio ya maabara, na si jukumu la tabibu (daktari), ni jukumu la wana bioteknolojia (Laboratory scientists, waliosomea tafiti).

Utengenezaji wa hataki (Reagents) za maabara zinazotumika kupimia magonjwa katika maabara za binadamu na wanyama (clinical laboratory reagents). Mfano monoclonal antibodies and enzymes. Serikali inatumia pesa nyingi sana kununua hizi hataki kutoka nje ya nchi.

Kuzuia tatizo la aleji kwa kufanya uoanishaji wa dawa na genetiki ya mgonjwa (Pharmacogenetics/ personalized medicine). Wagonjwa wengi wanapewa dawa ambazo zinawaletea madhara (aleji) kutokana na kutokujua nani anapaswa kupewa dawa gani kulingana na asili ya miili yao. Hapa biotechnologist anasimama kama mshauri wa daktari kabla ya kumpatia dawa mgonjwa.

Wapo wagonjwa wanatibiwa bila kupona (Infectious diseases), kitalamu tatizo hili linajulikana kama drug resistance. Tatizo la usugu linatatulika kwa mbinu za kibioteknolojia mfano DNA sequencing and alignment na uoteshaji wa vimelea vya magonjwa (bakteria na fangasi) maabara kisha kuangalia vinaweza kufa kwa dawa gani (microbial culture), na kupima wingi wa vimerea katika mwili mfano HIV viral load tests (HVL) na early infant diagnosis (EID).

Kufanya shughuli zote za vinasaba (DNA au RNA), ikiwa ni pamoja na kutibu magonjwa kwa njia za jenetiki, (gene therapy), kumechi kati ya mzazi na mtoto, au ndugu na ndugu kupitia DNA. Hii inaondoa utata katika kujua nani ni mzazi wa nani au nani ni ndugu wa nani mfano janga la moto la msanvu morogoro.

Kufanya tafiti za afya ya binadamu na kutoa elimu kwa watumishi wa afya / kutoa ripoti za tafiti kwa watumishi wengine wa wizara za afya. (Madaktari, nk).

Mgawanyiko wa majukumu baina ya watumishi wa wizara ya afya:

WATAFITI (researchers)
: Hili ndilo kundi la kwanza linalotoa majawabu na mbinu mpya za kupambana na magonjwa mbalimbali, hili ni kundi la wanasayansi waliobobea katika maeneo mbalimbali (classified scientists) mfano: Microbiologists, Molecular biologists, biochemists, chemists(Pharmacists), Immunologists, Bioinformaticians, Bio Statisticians, epidemiologists, Physicist and Botanists. Unaposema Biotechnologist ni mwanasayansi alieandaliwa katika maeneo yote tajwa, hivyo anauwezo mkubwa sana katika kufanya tafiti.

NB: Katika eneo la madawa mfamasia (Pharmacist) amebobea sana katika kemia ya madawa, hivyo hufanya kazi na mtaalamu wa biolojia na fizikia katika uvumbuzi. Biotechnologists wanaweza fanya kazi zote za maabara ya binadamu (clinical laboratory activities), ila ni kuanzia hatua ya uchakataji wa sampuli na si kuanzia hatua ya kuonana na mgonjwa moja kwa moja japo baadhi ya vyuo katika mitaala yao vinawaongezea mafunzo ya kuwahudumia wagonjwa moja kwa moja.

WATOA HUDUMA ZA AFYA (Medical personel):
Hili ni kundi la watalamu wa afya walioandaliwa mahususi kwa ajili ya kutoa huduma za afya moja kwa moja kwa mgonjwa, watalamu hawa wanategemea moja kwa moja majibu na mbinu kutoka kwa watafiti ili kuzitumia katika kutibu wagonjwa.

Daktari (Medical doctor),
Huyu amefundishwa masomo mbalimbali yaliyopatikana kutokana na tafiti za wanasayansi mbalimbali tajwa hapo juu. Daktari wa binadamu si mtafiti/mvumbuzi, ameandaliwa kumtibu mgonjwa kwa kutumia mbinu zilizopitishwa na kukubalika baada ya tafiti mbalimbali. Na ni daktari pekee ndie anaejua namna ya kumtibu mgonjwa kwa kuzingatia kanuni na taratibu zote za jinsi ya kutibu ili kuokoa maisha. Kitalamu ni daktari pekee ndie amebobea katika kutibu ila si kutafiti na kufanya uvumbuzi isipokua yule alie specialize katika research na kuachana na kutibu moja kwa moja.

Mteknolojia wa maabara ya binadamu (medical laboratory technologist):
Hili ni kundi la watalamu walioandaliwa kwaajili ya kufanya upimaji wa magonjwa mbalimbali ya binadamu (diseases diagnosis), hawa pia ni unclassified scientists hawajaandaliwa kua wavumbuzi au watafiti, wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.

Muuguzi (Nurse):
Hili ni kundi la wataalamu walioandaliwa kuwatibu wagonjwa kwa kufuata maagizo au kujadiliana na daktari, kufanya uangalizi wa wagonjwa muda wote, kufuatilia hali zao na mabadiliko yeyote pindi wanapokua wakipatiwa matibabu, hawa ni watu muhimu sana.

NB: Kundi la kwanza la watafiti ni kundi ambalo hua halijulikani licha ya kua na mchango mkubwa sana katika kufanikisha matibabu ya mgonjwa, kwa sababu Daktari ndie mtu wa mwisho mtoa maamuzi hivyo jamii inampa nafasi kubwa sana na kufikiri ndie anaejua kila kitu, na hata kufikiri mchakato wa upatikanaji wa dawa mpya au chanjo ni jukumu lake kitu ambacho sio kweli na kwamba hilo ni jukumu la watafiti.

Changamoto iliyopo Tanzania kwa wataalamu wa Bioteknolojia(WATAFITI).
Wizara ya afya haitambui uwepo wa wataalamu hawa, ambao ni kitovu cha tafiti za afya duniani kote. Wizara ya afya haijawapatia nafasi ya kufanya kazi zao katika maeneo yao, Wizara haijawapatia leseni za kufanya kazi zao. Hakuna mfumo wa kuwatambulisha moja kwa moja.

Vipimo vinavyohusisha vinasaba (DNA /RNA) Tanzania havifanywi na watalamu wa bioteknolojia ambao ndio walioandaliwa kufanya vipimo hivyo na wizara ya afya haitaki kuwaona wakifanya kazi katika maabara za binandamu licha ya kua na uwezo wa kufanya hivyo na bado haitoi ufafanuzi wakafanye kazi zao wapi.

Hitimisho:
Ni jukumu la wizara ya afya Tanzaia kuwapatia leseni wataalamu wa bioteknolojia ili watatue changamoto za wizara ya afya katika utoaji wa huduma za afya kama ambavyo dunia nzima inawatumia vizuri. Tubadilike na teknolojia

ALIANDIKA
Modern Scientist :
Moshi RN Contact : 0758406251 Email moshingamba@gmail.com
Ngoja nikuonyeshe mechanism ya kutengeneza Chloroquine. Hapa
 
Utangulizi
Bioteknolojia ni aina ya teknolojia inayotumia elimu ya biolojia kwa manufaa ya binadamu. Ni teknolojia ya uvumbuzi wa mambo mbalimbali kwa manufaa ya binadamu, kwenye upande wa afya, kilimo, mazingira na viwanda na ilianza kutumika tangu mwaka . 1919 na mwanasayansi mjerumani aitwae Karl Ereky ikiwa na makampuni (biotech companies) zaidi ya 2300 USA, zaidi ya makampuni 100 India, Canada, China, Ujerumani, Italia hadi afrika ya kusini. Watalamu wa bioteknolojia wanazalishwa na vyuo vingi duniani kwa sababu ni uwanja (field) inayokua kwa kasi sana kutokana na uhitaji wake kua mkubwa.

Mtalamu wa bioteknolojia ameandaliwa kua mtafiti katika sayansi ya maisha (Life Science) huyu ndie anaeleta utatuzi katika maeneo mbalimbali hasa afya ya mwanadamu, uvumbuzi wake unatumika katika kuboesha mbinu za matibabu, mbinu za upimaji magonjwa, nk kwa sababu ni mwanasayansi pekee aliesoma sayansi katika ngazi ya MOLEKULI (MOLECULAR LEVEL).

Historia fupi
Hizi ni mifano michache kati ya maelfu ya uvumbuzi katika bioteknolojia:

1928 Alexander Fleming aligundua fangasi (fungi) wanaoweza kuzuia ukuaji au kuua bakteria. Dawa zote za penisilini kama amoxicillin, ampicillin, nk. zimetokana na uvumbuzi wake.

1944 Kary Mullis aligundua mbinu iitwayo Polymerase chain reaction (PCR) inayotumika kupimia magonjwa mbalimbali mfano . COVID 19, HIV, Hepatitis B, Dengue, na mengine mengi, mbinu hii ni ukombozi wa dunia katika afya ya mwanadamu kutokana na ufanisi wake.

1978 Insulini bandia (artificial insulin) iligunduliwa na mtalamu wa bioteknolojia na mpaka leo wagonjwa wa kisukari (diabetic patients with hyperglycemia) wanaitumia duniani kote kushusha kiwango cha sukari kwenye damu.

1950 Alec john Jeffreys alivumbua mbinu ya kumtambua binadamu au viumbe wengine kwa kutumia vinasaba (DNA) mbinu inafahamika kitalamu kama genetic fingerprinting and DNA profiling ambayo inatumika dunia nzima na watu wa usalama kama polisi kuwatambua wahalifu mfano F.B.I marekani wako vizuri sana katika hili.

Majukumu ya mtalamu wa bioteknolojia kwa upande wa afya.

Kubuni mbinu mpya za upimaji wa magonjwa, zenye ufanisi mkubwa na zinazoweza kugundua maambukizi ya muda mfupi sana mfano Polymerase chain reaction (PCR) na vipimo vya haraka (Rapid tesk kits). Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.

Kugundua na kuzalisha dawa na kinga/chanjo (Vaccine) za magonjwa mbalimbali. Ugunduzi wa madawa na chanjo ni mchakato mrefu wa tafiti na majaribio ya maabara, na si jukumu la tabibu (daktari), ni jukumu la wana bioteknolojia (Laboratory scientists, waliosomea tafiti).

Utengenezaji wa hataki (Reagents) za maabara zinazotumika kupimia magonjwa katika maabara za binadamu na wanyama (clinical laboratory reagents). Mfano monoclonal antibodies and enzymes. Serikali inatumia pesa nyingi sana kununua hizi hataki kutoka nje ya nchi.

Kuzuia tatizo la aleji kwa kufanya uoanishaji wa dawa na genetiki ya mgonjwa (Pharmacogenetics/ personalized medicine). Wagonjwa wengi wanapewa dawa ambazo zinawaletea madhara (aleji) kutokana na kutokujua nani anapaswa kupewa dawa gani kulingana na asili ya miili yao. Hapa biotechnologist anasimama kama mshauri wa daktari kabla ya kumpatia dawa mgonjwa.

Wapo wagonjwa wanatibiwa bila kupona (Infectious diseases), kitalamu tatizo hili linajulikana kama drug resistance. Tatizo la usugu linatatulika kwa mbinu za kibioteknolojia mfano DNA sequencing and alignment na uoteshaji wa vimelea vya magonjwa (bakteria na fangasi) maabara kisha kuangalia vinaweza kufa kwa dawa gani (microbial culture), na kupima wingi wa vimerea katika mwili mfano HIV viral load tests (HVL) na early infant diagnosis (EID).

Kufanya shughuli zote za vinasaba (DNA au RNA), ikiwa ni pamoja na kutibu magonjwa kwa njia za jenetiki, (gene therapy), kumechi kati ya mzazi na mtoto, au ndugu na ndugu kupitia DNA. Hii inaondoa utata katika kujua nani ni mzazi wa nani au nani ni ndugu wa nani mfano janga la moto la msanvu morogoro.

Kufanya tafiti za afya ya binadamu na kutoa elimu kwa watumishi wa afya / kutoa ripoti za tafiti kwa watumishi wengine wa wizara za afya. (Madaktari, nk).

Mgawanyiko wa majukumu baina ya watumishi wa wizara ya afya:

WATAFITI (researchers)
: Hili ndilo kundi la kwanza linalotoa majawabu na mbinu mpya za kupambana na magonjwa mbalimbali, hili ni kundi la wanasayansi waliobobea katika maeneo mbalimbali (classified scientists) mfano: Microbiologists, Molecular biologists, biochemists, chemists(Pharmacists), Immunologists, Bioinformaticians, Bio Statisticians, epidemiologists, Physicist and Botanists. Unaposema Biotechnologist ni mwanasayansi alieandaliwa katika maeneo yote tajwa, hivyo anauwezo mkubwa sana katika kufanya tafiti.

NB: Katika eneo la madawa mfamasia (Pharmacist) amebobea sana katika kemia ya madawa, hivyo hufanya kazi na mtaalamu wa biolojia na fizikia katika uvumbuzi. Biotechnologists wanaweza fanya kazi zote za maabara ya binadamu (clinical laboratory activities), ila ni kuanzia hatua ya uchakataji wa sampuli na si kuanzia hatua ya kuonana na mgonjwa moja kwa moja japo baadhi ya vyuo katika mitaala yao vinawaongezea mafunzo ya kuwahudumia wagonjwa moja kwa moja.

WATOA HUDUMA ZA AFYA (Medical personel):
Hili ni kundi la watalamu wa afya walioandaliwa mahususi kwa ajili ya kutoa huduma za afya moja kwa moja kwa mgonjwa, watalamu hawa wanategemea moja kwa moja majibu na mbinu kutoka kwa watafiti ili kuzitumia katika kutibu wagonjwa.

Daktari (Medical doctor),
Huyu amefundishwa masomo mbalimbali yaliyopatikana kutokana na tafiti za wanasayansi mbalimbali tajwa hapo juu. Daktari wa binadamu si mtafiti/mvumbuzi, ameandaliwa kumtibu mgonjwa kwa kutumia mbinu zilizopitishwa na kukubalika baada ya tafiti mbalimbali. Na ni daktari pekee ndie anaejua namna ya kumtibu mgonjwa kwa kuzingatia kanuni na taratibu zote za jinsi ya kutibu ili kuokoa maisha. Kitalamu ni daktari pekee ndie amebobea katika kutibu ila si kutafiti na kufanya uvumbuzi isipokua yule alie specialize katika research na kuachana na kutibu moja kwa moja.

Mteknolojia wa maabara ya binadamu (medical laboratory technologist):
Hili ni kundi la watalamu walioandaliwa kwaajili ya kufanya upimaji wa magonjwa mbalimbali ya binadamu (diseases diagnosis), hawa pia ni unclassified scientists hawajaandaliwa kua wavumbuzi au watafiti, wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.

Muuguzi (Nurse):
Hili ni kundi la wataalamu walioandaliwa kuwatibu wagonjwa kwa kufuata maagizo au kujadiliana na daktari, kufanya uangalizi wa wagonjwa muda wote, kufuatilia hali zao na mabadiliko yeyote pindi wanapokua wakipatiwa matibabu, hawa ni watu muhimu sana.

NB: Kundi la kwanza la watafiti ni kundi ambalo hua halijulikani licha ya kua na mchango mkubwa sana katika kufanikisha matibabu ya mgonjwa, kwa sababu Daktari ndie mtu wa mwisho mtoa maamuzi hivyo jamii inampa nafasi kubwa sana na kufikiri ndie anaejua kila kitu, na hata kufikiri mchakato wa upatikanaji wa dawa mpya au chanjo ni jukumu lake kitu ambacho sio kweli na kwamba hilo ni jukumu la watafiti.

Changamoto iliyopo Tanzania kwa wataalamu wa Bioteknolojia(WATAFITI).
Wizara ya afya haitambui uwepo wa wataalamu hawa, ambao ni kitovu cha tafiti za afya duniani kote. Wizara ya afya haijawapatia nafasi ya kufanya kazi zao katika maeneo yao, Wizara haijawapatia leseni za kufanya kazi zao. Hakuna mfumo wa kuwatambulisha moja kwa moja.

Vipimo vinavyohusisha vinasaba (DNA /RNA) Tanzania havifanywi na watalamu wa bioteknolojia ambao ndio walioandaliwa kufanya vipimo hivyo na wizara ya afya haitaki kuwaona wakifanya kazi katika maabara za binandamu licha ya kua na uwezo wa kufanya hivyo na bado haitoi ufafanuzi wakafanye kazi zao wapi.

Hitimisho:
Ni jukumu la wizara ya afya Tanzaia kuwapatia leseni wataalamu wa bioteknolojia ili watatue changamoto za wizara ya afya katika utoaji wa huduma za afya kama ambavyo dunia nzima inawatumia vizuri. Tubadilike na teknolojia

ALIANDIKA
Modern Scientist :
Moshi RN Contact : 0758406251 Email moshingamba@gmail.com
Skip to Main content

Chloroquine
Chloroquine is a 4-aminoquinoline compound that has been used extensively for the treatment and prevention of malaria.
From: Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016
Related terms:
View all Topics
Drugs for Treating Protozoan Infections
R.S. Vardanyan, V.J. Hruby, in Synthesis of Essential Drugs, 2006
Chloroquine
Chloroquine, 7-chloro-4-(4-diethylamino-1-methylbutylamino)-quinoline (37.1.3), is made by reacting 4,7-dichloroquinoline (37.1.1.1) with 4-diethylamino-1-methylbutylamine (37.1.1.2) at 180 °C [1–3].
3-s2.0-B9780444521668500376-u37-01-9780444521668.jpg


In order to realize the synthesis, the necessary 4,7-dichloroquinoline (37.1.1.1) is prepared in several ways from 3-chloroaniline. One of these ways consists of reacting 3-chloroaniline with ethoxymethylenmalonic ester to make (3-choroanilino)-methylenemalonic ester (37.1.1.4), which then undergoes high-temperature heterocyclization to make the ethyl ester of 7-chloro-4-hydroxyquinolin-3-carboxylic acid (37.1.1.5). Hydrolyzing this with sodium hydroxide gives 7-chloro-4-hydroxyquinolin-3-decarboxylic acid (37.1.1.6), which when heated at 250–270 C is decarboxylated, forming 7-chloro-4-hydroxyquinoline (37.1.1.7). Treating this with phosphorus oxychloride gives one of the desired components for synthesis of chloroquine – 4,7-dichloroquinoline (37.1.1.1) [4,5].
3-s2.0-B9780444521668500376-u37-02-9780444521668.jpg


The second method of preparing of 4,7-dichloroquinoline (37.1.1.1) consists of reacting 3-chloroaniline with the diethyl ester of oxaloacetic acid in the presence of acetic acid to give the corresponding enamine (37.1.1.8), which when heated to 250 °C undergoes heterocyclization to the ethyl ester of 7-chloro-4-hydrozyquinolin-2-carboxylic acid (37.1.1.9) accompanied with a small amount of 5-chloro-4-hydroxyquinolin-2-carboxylic acid (37.1.1.10), which is separated from the main product by crystallization from acetic acid. Alkaline hydrolysis of the ethyl ester of the 7-chloro-4-hydroxyquinolin-2-carboxylic acid (37.1.1.9) and subsequent high-temperature decarboxylation of the resulting acid (37.1.1.11) gives 7-chloro-4-hydroxyquinolin (37.1.1.7). Reacting this with phosphorus oxychloride using the scheme described above gives 4,7-dichloroquineoline (37.1.1.1) [6].
3-s2.0-B9780444521668500376-u37-03-9780444521668.jpg


Finally, the third of the suggested variants for making 4,7-dichloroquinoline (37.1.1.1) consists of reacting 3-chloroaniline with the ethyl ester of formylacetic acid to make the enamine (37.1.1.12), which on heating directly cyclizes to 7-chloro-4-hydroxyquinoline (37.1.1.7). Reacting this with phophorus oxychloride according to the scheme already described gives 4,7-dichloroquinoline (37.1.1.1) [7].
3-s2.0-B9780444521668500376-u37-04-9780444521668.jpg


The second component necessary for synthesizing of the chloroquine is 4-diethylamino-1-methylbutylamine (37.1.1.2), is also made in various ways. Alkylating acetoacetic ester with 2-diethylaminoethylchloride gives 2-diethylaminoethylacetoacetic acid ester (37.1.1.13), which upon acidic hydrolysis (using hydrochloric acid) and simultaneous decarboxylation makes 1-diethylamino-4-pentanone (37.1.1.14). Reductive amination of this compound with hydrogen and ammonia using Raney nickel as a catalyst gives 4-diethylamino-1-methylbutylamine (37.1.1.2) [8].
3-s2.0-B9780444521668500376-u37-05-9780444521668.jpg


Another way suggested for making 4-diethylamino-1-methylbutylamine (37.1.1.2) is by starting with 3-acetylbutyrolactone (37.1.1.15), which is made by reacting acetoacetic acid ester with ethylenoxide. Acidic hydrolysis of the ester group in 3-acetylbutyrolactone (37.1.1.15) along with simultaneous decarboxylation gives 1-bromo-4-pentanone (37.1.1.16). Reacting this with diethylamine gives 1-diethylamino-4-pentanone (37.1.1.14), and reductive amination of this compound using hydrogen and ammonia using Raney nickel as a catalyst gives 4-diethyl-1-methylbutylamine (37.1.1.2) [9].
3-s2.0-B9780444521668500376-u37-06-9780444521668.jpg


Chloroquine is the drug of choice for preventing and treating acute forms of malaria caused by P. vivax, P. malariae, P. ovale, as well as sensitive forms of P. falciparum. The mechanism of its action is not completely clear, although there are several hypotheses explaining its antimalarial activity. Chloroquine and its analogs inhibit synthesis of nucleic acids of the parasite by affecting the matrix function of DNA. This happens by preliminary binding of the drug through hydrogen bonds with the purine fragments, and subsequent introduction of the chloroquine molecule between the orderly arranged base pairs into the spirals of the DNA of the parasite. Thus chloroquine prevents transcription and translation, which significantly limits the synthesis of DNA and RNA in the parasite. The selective toxicity of chloroquine in particular with respect to malarial plasmodia is also attributed to the ability of the parasitized red blood cells to concentrate the drug in amounts approximately 25 times greater than in normal erythrocytes. There is also a different hypothesis. Chloroquine has a high affinity for tissues of the parasite and is concentrated in its cytoplasm. As a weak base, it increases the pH of the intracellular lysosome and endosome. A more acidic medium in these organelles is needed for the parasite to affect mammalian cells. As a result, chloroquine inhibits growth and development of parasites.
Thus the main quality of chloroquine that exceeds all other antimalarial drug is its effect on erythrocytic schizonts (hematoschizotropic action). However, chloroquine also possesses amebicidal action. It has also been observed to have immunodepressive and antiarrhythmic properties.
It is used for all types of malaria, for chemotherapy, as well as for non-gastric amebiasis, and amebic abscesses of the liver. Synonyms of this drug are nivaquine, quingamine, delagil, resoquine, atroquine, and others.
View chapterPurchase book
Therapeutic Areas II: Cancer, Infectious Diseases, Inflammation & Immunology and Dermatology
K.M. Muraleedharan, M.A. Avery, in Comprehensive Medicinal Chemistry II, 2007
7.27.5.1.1.1 4-Aminoquinolines
Chloroquine (CQ, 2) was developed as a result of intense antimalarial drug development efforts in the USA during World War II, but the compound was familiar to Germans as early as 1934 under the name resochin.176 The safety, efficacy, and low cost brought chloroquine to the front lines to treat malaria, and it was used extensively for almost two decades after its first introduction in 1944–45 – until the parasites developed resistance in the 1960s. Amodiaquine (AQ, 3) is structurally related to CQ and is active against drug-resistant strains of P. falciparum.180,181 Even though it is more effective in parasite clearance than CQ, the clinical use of amodiaquine has been limited due to hepatotoxicity, agranulocytosis, and cross-resistance with CQ.182 Pyronaridine (4), an acridine derivative having resemblance to CQ and AQ, was first developed in China in 1970 and has proven to be very effective against all four Plasmodium species affecting humans, including drug-resistant strains.183–185
Members of the quinoline family in general exert their effect during the intraerythrocytic phase of the Plasmodium life cycle where the parasites show tremendous increase in metabolic activities and make use of host cell constituents for their biosynthetic needs.186 Hemoglobin catabolism, which occurs within the digestive food vacuoles, is one of the important pathways by which these parasites acquire amino acids. The involvement of three classes of enzymes, namely plasmepsins, falcipains, and falcilysin, has been implicated in this process, and each has gained attention as important chemotherapeutic targets (see below). As the redox-active heme moieties generated during hemoglobin degradation are toxic, the parasites biomineralize them to nontoxic hemozoin (malaria pigment). The ability of chloroquine to inhibit hemozoin formation suggests that this and related compounds may be interfering with the heme-detoxification process, making the parasites susceptible to oxidative stress by heme.187,188 The exact molecular details of this interference have been the subject of much discussion, and studies over the last several years tend to show that inhibition of hemozoin formation may either be due to the direct complexation of quinolines with hematin (hydroxyferriprotoporphyrin IX), an autooxidation product of heme, or due to a capping effect whereby the drug binds to the growing face of the hemozoin crystal, thus preventing its growth.189 The ability of members of this class to interfere with heme binding to histidine rich protein II (HRP-II), a protein involved in hemozoin formation,190 and a recent report showing chloroquine binding with lactate dehydrogenase191 point toward the possible existence of additional biological targets.
After the emergence of parasites that are resistant to chloroquine, a number of structure–activity relationship (SAR) studies were initiated to understand the stereoelectronic factors that are essential for the observed antiplasmodial action and those characteristics that contribute to parasitic resistance.186,192 The following general conclusions could be derived from these studies.
1.
The weak base property of chloroquine allows it is diffuse through plasma as well as vacuolar membranes. Its protonation under the acidic conditions of the food vacuole traps the molecule inside, leading to accumulation.
2.
The 4-amino quinoline nucleus is essential for complexation with hematin; but this alone is not sufficient for the inhibition of hemozoin formation. Simple quinoline or its 3-, 5-, 6-, or 8-amino derivatives do not form noticeable complexes with hematin, whereas its 2- and 4-amino substituted analogs do, and the major component of their stability arises from π–π interactions with the porphyrin system.193
3.
The aminoalkyl side chain in chloroquine helps in the accumulation of the drug inside the food vacuole and assists in the complexation of the quinoline nucleus with the porphyrin system. Modification of this side chain either by varying its length or attaching new chemical groups can circumvent chloroquine resistance.186,194 Although this is not a permanent solution to deal with resistance, such modifications have provided a number of interesting compounds with favorable therapeutic profiles, some of which are presented in Table 3.
Table 3. Various chloroquine analogs having improved activities against resistant strains of the parasite
CompoundsBiological characteristics
Ferroquine (5) is ∼22 times more potent than chloroquine against resistant strain of P. falciparum in vitro. After a 4-day in vivo test in mice infected with P. berghei (NS), only 20% showed recrudescence when observed for 60 days, whereas all mice treated with CQ showed recrudescence.195,196
Analogs such as 6, with shorter side chains (n=2–3) or larger chains (n=10–12) are almost 10 times more potent than CQ in vitro against resistant strains.197
Compound 7 showed an in vitro IC50 value of 49±14 nM (compared to 315±82 nM for CQ) against resistant strains of P. falciparum. However, this and related analogs with shorter side chains in general showed low in vivo efficacy and cross resistance with CQ.198
Bis-quinoline (8) showed an IC50 value of 1.4 nM against W2 clone of P. falciparum, (relative to 100 nM for CQ) and 100% cure when tested in vivo against P. berghei at 320 mg kg−1 dose.199,200
4.
The presence of chlorine at the 7-position is essential for the inhibition of hemozoin formation and its replacement with other halogens, such as iodine or bromine, do not significantly alter the biological activities of these compounds. Substitution of hydrogens in the quinoline ring with other groups influence the pKa of the ring as well as the side chain nitrogens and may indirectly affect the stability of the hematin–drug complex.197,201,202
An overview of various factors described above is pictorially presented in Figure 3.
3-s2.0-B008045044X002273-gr3.jpg


Figure 3. Structural features of chloroquine that contribute to its biological activity.
Since toxic side effects limited the use of amodiaquine, there have been several attempts to understand the molecular basis for this toxicity and to develop better candidates devoid of adverse effects. Available evidences indicate that the quinone-imine intermediate 9, formed as a result of metabolism of AQ in liver, alkylates various biological targets and is responsible for the toxicity.203
3-s2.0-B008045044X002273-fx3.gif


Introduction of various groups at the 3' and 5' positions of the amodiaquine side chain was initially considered as a strategy to increase the lipophilicity of drugs and to reduce the cross-resistance which normally arises after side chain metabolism.204,205 Several compounds in this series have been synthesized and analyzed (e.g., 1012).206 Even though these compounds are more potent than AQ in vitro and in vivo, toxicity remains a problem.207 In an elegant approach by O’Neill et al., a number of AQ analogs were synthesized by interchanging the position of hydroxy and diethyl-aminomethyl groups and were evaluated for antimalarial potencies and toxicities.208 It was assumed that the formation of the quinone-imine intermediate is electronically unfeasible in such systems, which, at the same time, possess necessary groups to interact with a biological target. This strategy has given very promising results in initial studies. Thus, compound 13 (isoquine) was found to be more potent than CQ and AQ without any signs of toxicity.
3-s2.0-B008045044X002273-fx4.gif


View chapterPurchase book
Approaches to Design and Synthesis of Antiparasitic Drugs
Satyavan Sharma, Nitya Anand, in Pharmacochemistry Library, 1997
7.1 Chloroquine (3) and amodiaquine
The key intermediate for synthesizing chloroquine, amodiquine and other 4-aminoquinoline drugs is 4,7-dichloroquinoline (91), which can be prepared by reacting m-chloroaniline (83) with diethyl oxaloacetate (EtO-CO-CH2-CO-COOEt) or ethoxymethylene malonic ester [EtO-CH = C(COOEt)2] as shown in scheme 1 [8,128–133].
1-s2.0-S0165720897800384-sc1.gif


Scheme 1. Reagents: (a) EtOCO-CH2CO-COOEt, (b) heat and separation of isomers (c) NaOH, heat, (d) heat (250 °C), (e) POCl3, (f) EtOCH = C(COOEt)2, (g) NaOH, heat, HCl
The synthesis of various 4-aminoquinoline antimalarials may be achieved by nucleophilic reaction of 91 with desired amines. Scheme 2 outlines the preparation of chloroquine (3) and amodiaquine (8) starting from 4,7-dichloroquinoline (91) [134–136].
1-s2.0-S0165720897800384-sc2.gif


Scheme 2. Reagents: (a) Ac2O; (b) HCHO, NHEt2 (c) HCl.
Another method to prepare chloroquine (3) involves reaction of 83 with methyl acrylate to get via 98 and 99 the adduct 100, which is converted into 7-chloro-1,2,3,4-tetrahydroquinoline-4-one (103). Reaction of 103 with novaldiamine (92) under dehydrogenating conditions gives chloroquine in about 25% overall yield [133] ( 3).
1-s2.0-S0165720897800384-sc3.gif


Scheme 3.
View chapterPurchase book
Drugs and Drug Leads Based on Natural Products for Treatment and Prophylaxis of Malaria
Søren Brøgger Christensen, in Evidence-Based Validation of Herbal Medicine, 2015
14.2.2.1.2 Chloroquine
The most successful drug and without comparison, chloroquine [20], was not developed using quinine as a scaffold but methylene blue (Figure 14.6). Ehrlich concluded that the ability of the Plasmodium parasite to take up this dye so efficiently had to cause a toxic effect on the parasite. He succeeded in curing two patients with malaria, but the drug was not sufficient efficient for general use [22]. Attempts to optimize the molecule led to chloroquine, the potential of which, however, was first realized after the Second World War [22]. Chloroquine became the drug of first choice in malaria therapy for more than two decades until resistance limited the use of the drug. The resistance is correlated to point mutations in the gene pfcrt [26]. The gene codes for a transporter PfCRT. Mutations in the gene like K76T has been assumed to remove a positively charged lysine from the transporter thereby enabling it to remove the positively charged chloroquine from the food vacuole [20]. Other PfCRT mutations, however, also induce resistance, suggesting a more complex situation. Like quinine, chloroquine prevents hemozoin formation [19]. An interesting feature of chloroquine is that the racemic form of this drug is used. The achirality of the hem molecule leads to the expectation that the two isomers have the same affinity toward the biological target, but obviously different distribution or metabolism of the two enantiomers cannot be excluded.
3-s2.0-B9780128008744000143-f14-06-9780128008744.jpg


Figure 14.6. Methylene blue and chloroquine. Chloroquine is used as a racemic mixture. The missing chirality of the target molecule (the precipitating hem) must mean that the two enantiomers have the same affinity for the target, but they may be differently metabolized or distributed in the body.
View chapterPurchase book
Antimicrobial Potentiation Approaches: Targets and Inhibitors
Thomas E. Renau, ... Ving J. Lee, in Annual Reports in Medicinal Chemistry, 1998
Protozoal
The emergence of resistance in the late 1950’s to chloroquine, an agent used to treat malaria, severely compromised the effectiveness and use of this drug (3). Studies have demonstrated that chloroquine resistance in Plasmodium falciparum, the causative organism, bears close similarities to the MDR phenotype described above and can be reversed by several drugs including verapamil (3). Two genes, pfmdr1 and pfmdr2, have been identified in P. falciparum which are approximately 60% homologous to the MDR genes found in mammalian cells (93,94). However, the exact role of these genes in the emergence of drug resistance remains controversial since there appears to be no correlation between the amplification of the pfmdr1 gene and resistance to chloroquine, in vitro (95).
With growing evidence that chloroquine resistance patterns are modulated via a P-gp-like transporter, studies to block the MDR phenotype and potentiate the activity of chloroquine have been reported. For example, chlorpheniramine reverses chloroquine resistance in 11 of 14 P. falciparum isolates at 625 nM with no potentiation observed against chloroquine-susceptible clones (96). In another study, fangchinoline, a bis-biphenylisoquinoline, potentiated the activity of chloroquine against a chloroquine-resistant P. falciparum strain in vitro (97). The compound also potentiated the activity of vinblastine in an MDR cell line approximately 90-fold, indicating it may inhibit the P-gp transporter. WR268954 (10), a pyrrolidino alkyiamine, decreases the IC50 of chloroquine for drug resistant P. falciparum 90-fold when compared to chloroquine alone (98). The compound has weak intrinsic antimalarial activity and may act as a competitive inhibitor of the binding of chloroquine to the putative transporter.
1-s2.0-S0065774308610775-gr7.gif


View chapterPurchase book
Sun Protection in Man
Homer S. Black, Lesley E. Rhodes, in Comprehensive Series in Photosciences, 2001
30.3.1 Antimalarials
In the past, the 4-amino-quinolines, including chloroquine and hydroxychloroquine, were frequently employed as therapeutic agents for a broad spectrum of light-sensitive disorders. These included systemic lupus erythematous, polymorphic light eruption (PLE), solar urticaria, and porphyria cutanea tarda [34]. Chloroquine, shown here, is a reasonably effective absorber of UV light and has a propensity to accumulate in the epidermis.
1-s2.0-S1568461X0180065X-fx2.jpg


Chloroquine
When excreted in sweat after UV exposure, it demonstrates a spectral shift with increased absorption in the 270–310 nm range. An early study reported that chloroquine, when applied topically to human skin, produced a significant decrease in the erythema response, suggesting a strong screening effect [35]. Knox and Freeman [36] demonstrated that orally ingested chloroquine inhibited the recurrence of basal cell carcinomas in a double-blind study of over 200 tumour-prone patients (treated for previous basal cell carcinomas). However, this protective effect did not extend to squamous cell carcinomas and statistical significance washed out after 17 months of the three-year follow-up period. Moreover, Cahn et al. [37] showed that systemically administered chloroquine phosphate did not alter the MED response in patients suffering from PLE. Nor were they able to demonstrate differences in UV absorption of epidermis obtained from patients systemically administered control vehicle or chloroquine. Neither could they detect levels of the drug in the epidermis sufficient to act as a physical sunscreen. They concluded that chloroquine photoprotection could not be due to a light-filtering mechanism [38]. Thus, while the mode of photoprotective action of the antimalarials remains in question, the occasional severe [39] and irreversible side-effects (notably retinopathy) preclude these agents as general photoprotectants [40].
View chapterPurchase book
Bionanofibers in drug delivery*
Xin Zhao, ... Wenguo Cui, in Nanobiomaterials in Drug Delivery, 2016
12.2.3.2 Hydrophilic drugs
Hydrophilic drugs, such as the chemotherapeutic drug DOX and antimalarial chloroquine (CQ), can be dissolved in hydrophilic polymers such as gelatin, PEG, PVA, using common solvents such as mixing solution of water and HFIP for electrospinning. Hydrophilic drugs released from hydrophilic polymer usually exhibit a large initial burst release and a short release period. To circumvent this problem, hydrophobic polymers can be used as an alternative drug carrier; this, however, precludes the use of a common solvent for both polymer and drug. In this case, hydrophilic drugs can first be loaded into drug vehicles, such as MSNs, which are then dispersed in the polymer solution before blending electrospinning (Qiu et al., 2013; Zhao et al., 2015a,c). For instance, Qiu et al. fabricated PLLA–MSN–DOX composite nanofibers, which were found to have a high drug-loading capacity (Qiu et al., 2013) (Figure 12.7). Moreover, the rate and duration of drug release could be tuned by modifying drug and/or MSN concentrations. They demonstrated that the inclusion of DOX-loaded MSNs within the nanofibers resulted in a higher antitumor effect in vitro, likely due to a prolonged release and action of the drug.
3-s2.0-B9780323428668000125-f12-07-9780323428668.jpg


Figure 12.7. Fabrication of PLLA/DOX@MSNs electrospun composite nanofibers and its drug release profile.
Modified from Qiu et al. (2013).
In order to challenge the inability to dissolve drug and polymer in a common solvent, an alternative approach involves dissolution in two immiscible solvents before the mixture is subject to either coaxial or emulsion electrospinning. For example, Zhou et al. loaded antimalarial CQ into HA sol nanoparticles, which were then encapsulated in PLLA nanofibers by microsol/emulsion electrospinning. In this strategy, HA sol nanoparticles successfully preserved the bioactivity of CQ by minimizing its contact with the organic solvent. Also, nanofibers with core–shell morphology were obtained as the soft HA sol nanoparticles were stretched. An in vitro release study demonstrated a drug release period of longer than 40 days. It was further observed that the release rate was positively correlated to the concentrations of HA sol nanoparticles and CQ drug (Zhou et al., 2014).
View chapterPurchase book
Medicinal properties of marine plants
Ranjeet Kumar, Ashish Kumar Tewari, in Synthesis of Medicinal Agents from Plants, 2018
11.4.3 Pharmacological Activity of Aplidiopsamine A
Aplidiopsamine A 11.48 was tested for its ability to inhibit the growth of chloroquine sensitive (3D7) and resistant (Dd2) strains of the malarial parasite, Plasmodium falciparum. Human cell toxicity was assessed using the normal cell line HEK-293. Aplidiopsamine A was equally active against the two malarial parasite strains (IC50 = 1.47 (3D7) and 1.65 μM (Dd2)), and only showed growth inhibition against HEK-293 cells at higher doses, only reaching ∼100% inhibition at the highest dose tested (120 μM). Aplidiopsamine A, therefore, represents a novel lead structure that could be further developed into a drug to treat drug-resistant malarial infections (Carroll et al., 2010).
View chapterPurchase book
Antimalarial Agents
Eric Scholar, in xPharm: The Comprehensive Pharmacology Reference, 2007
Targets-Pharmacodynamics
Antimalarial drugs have a variety of targets and mechanisms of action. Many, like chloroquine, amodiaquine, mefloquine, and quinine act on heme in the parasitic food vacuole. In this way, they prevent the polymerization of hemoglobin, which can be toxic to the plasmodium parasite. Others are folate antagonists. Some of the drugs in this class, like pyrimethamine and proguanil, are selective inhibitors of parasitic dihydrofolate reductase, whereas the sulfonamides and sulfones are PABA antagonists and inhibit dihydropteroate synthetase. A third group of antimalarials, such as artemether, produces free radicals that destroy the malaria parasite or inhibit parasitic electron transport. Primaquine may also generate reactive oxygen species that may interfere with electron transport in the parasite. Finally, there are antibiotics, such as doxycycline, that selectively inhibit protein synthesis in the parasite Tracy and Webster (2001), Scholar and Pratt (2000), Olliaro (2001), Foley and Tilley (1998). The specific target varies with the antimalarial agent. The major of these drugs are most effective against the erythrocytic form of the parasite, although primaquine acts against the hepatic stages and latent tissue forms. For the blood schizoniticides, heme is a frequent target, as is folic acid synthesis, and mitochondrial electron transport.
View chapterPurchase book
Nanobiomaterials Architectured for Improved Delivery of Antimalaria Drugs
B.A. Aderibigbe, H.E. Mukaya, in Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016
Abstract
The increasing occurrence of malaria parasites’ resistance to the presently used antimalarial drugs, such as chloroquine, is hindering the fight against malaria. Factors contributing to the drug resistance of antimalarial drugs are: incorrect dosage, patients’ noncompliance due to inconvenient dosage schedules, poor drug quality, drug interactions, poor or erratic absorption, reduced uptake of the drug into the parasite, and an increased efflux of the drug out of the parasite. Applications of biomaterials for the design and preparation of drug-delivery systems have been found to improve the therapeutic effects of antimalarial drugs such as: reducing drug resistance, reducing drug toxicity, and a controlled drug-release mechanism. In this chapter, we evaluate the therapeutic efficacy of the presently developed nanobiomaterial-based delivery systems used for antimalarial drugs.
View chapterPurchase book
Elsevier logo
We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the use of cookies.
Copyright © 2020 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V.
 
  • Thanks
Reactions: Dyf
Mkuu unanukuu kitabu nini?ila so mby kwa ss wanasayansi rumekupata kdg .......mtu amefafanua kada/tahsusi we unaleta haya??
 
Mkuu unanukuu kitabu nini?ila so mby kwa ss wanasayansi rumekupata kdg .......mtu amefafanua kada/tahsusi we unaleta haya??
Hapo nilikuwa namprovia kuwa haya mambo sio siasa, hiyo kazi ya ugunguzi wa dawa ni ya Kemia, kwa mimi ninavyo elewa kwenye uvumbuzi wa madawa kuna hawa watu Biochemist, medicinal chemist, organic chemist, pharmacist, na watu wa molecular biology. Kwasababu hayo madawa ni ma organic compound biotechnology hizo reaction hawezi kuzielewa bila hao wakemia hapo
 
Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.
wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.
Mkuu, mbona unatudanganya? Jaribu kufanya simple research kabla ya kushusha uzi mrefu uliojaa uongo.
 
  • Thanks
Reactions: Dyf
Skip to Main content

Chloroquine
Chloroquine is a 4-aminoquinoline compound that has been used extensively for the treatment and prevention of malaria.
From: Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016
Related terms:
View all Topics
Drugs for Treating Protozoan Infections
R.S. Vardanyan, V.J. Hruby, in Synthesis of Essential Drugs, 2006
Chloroquine
Chloroquine, 7-chloro-4-(4-diethylamino-1-methylbutylamino)-quinoline (37.1.3), is made by reacting 4,7-dichloroquinoline (37.1.1.1) with 4-diethylamino-1-methylbutylamine (37.1.1.2) at 180 °C [1–3].
3-s2.0-B9780444521668500376-u37-01-9780444521668.jpg


In order to realize the synthesis, the necessary 4,7-dichloroquinoline (37.1.1.1) is prepared in several ways from 3-chloroaniline. One of these ways consists of reacting 3-chloroaniline with ethoxymethylenmalonic ester to make (3-choroanilino)-methylenemalonic ester (37.1.1.4), which then undergoes high-temperature heterocyclization to make the ethyl ester of 7-chloro-4-hydroxyquinolin-3-carboxylic acid (37.1.1.5). Hydrolyzing this with sodium hydroxide gives 7-chloro-4-hydroxyquinolin-3-decarboxylic acid (37.1.1.6), which when heated at 250–270 C is decarboxylated, forming 7-chloro-4-hydroxyquinoline (37.1.1.7). Treating this with phosphorus oxychloride gives one of the desired components for synthesis of chloroquine – 4,7-dichloroquinoline (37.1.1.1) [4,5].
3-s2.0-B9780444521668500376-u37-02-9780444521668.jpg


The second method of preparing of 4,7-dichloroquinoline (37.1.1.1) consists of reacting 3-chloroaniline with the diethyl ester of oxaloacetic acid in the presence of acetic acid to give the corresponding enamine (37.1.1.8), which when heated to 250 °C undergoes heterocyclization to the ethyl ester of 7-chloro-4-hydrozyquinolin-2-carboxylic acid (37.1.1.9) accompanied with a small amount of 5-chloro-4-hydroxyquinolin-2-carboxylic acid (37.1.1.10), which is separated from the main product by crystallization from acetic acid. Alkaline hydrolysis of the ethyl ester of the 7-chloro-4-hydroxyquinolin-2-carboxylic acid (37.1.1.9) and subsequent high-temperature decarboxylation of the resulting acid (37.1.1.11) gives 7-chloro-4-hydroxyquinolin (37.1.1.7). Reacting this with phosphorus oxychloride using the scheme described above gives 4,7-dichloroquineoline (37.1.1.1) [6].
3-s2.0-B9780444521668500376-u37-03-9780444521668.jpg


Finally, the third of the suggested variants for making 4,7-dichloroquinoline (37.1.1.1) consists of reacting 3-chloroaniline with the ethyl ester of formylacetic acid to make the enamine (37.1.1.12), which on heating directly cyclizes to 7-chloro-4-hydroxyquinoline (37.1.1.7). Reacting this with phophorus oxychloride according to the scheme already described gives 4,7-dichloroquinoline (37.1.1.1) [7].
3-s2.0-B9780444521668500376-u37-04-9780444521668.jpg


The second component necessary for synthesizing of the chloroquine is 4-diethylamino-1-methylbutylamine (37.1.1.2), is also made in various ways. Alkylating acetoacetic ester with 2-diethylaminoethylchloride gives 2-diethylaminoethylacetoacetic acid ester (37.1.1.13), which upon acidic hydrolysis (using hydrochloric acid) and simultaneous decarboxylation makes 1-diethylamino-4-pentanone (37.1.1.14). Reductive amination of this compound with hydrogen and ammonia using Raney nickel as a catalyst gives 4-diethylamino-1-methylbutylamine (37.1.1.2) [8].
3-s2.0-B9780444521668500376-u37-05-9780444521668.jpg


Another way suggested for making 4-diethylamino-1-methylbutylamine (37.1.1.2) is by starting with 3-acetylbutyrolactone (37.1.1.15), which is made by reacting acetoacetic acid ester with ethylenoxide. Acidic hydrolysis of the ester group in 3-acetylbutyrolactone (37.1.1.15) along with simultaneous decarboxylation gives 1-bromo-4-pentanone (37.1.1.16). Reacting this with diethylamine gives 1-diethylamino-4-pentanone (37.1.1.14), and reductive amination of this compound using hydrogen and ammonia using Raney nickel as a catalyst gives 4-diethyl-1-methylbutylamine (37.1.1.2) [9].
3-s2.0-B9780444521668500376-u37-06-9780444521668.jpg


Chloroquine is the drug of choice for preventing and treating acute forms of malaria caused by P. vivax, P. malariae, P. ovale, as well as sensitive forms of P. falciparum. The mechanism of its action is not completely clear, although there are several hypotheses explaining its antimalarial activity. Chloroquine and its analogs inhibit synthesis of nucleic acids of the parasite by affecting the matrix function of DNA. This happens by preliminary binding of the drug through hydrogen bonds with the purine fragments, and subsequent introduction of the chloroquine molecule between the orderly arranged base pairs into the spirals of the DNA of the parasite. Thus chloroquine prevents transcription and translation, which significantly limits the synthesis of DNA and RNA in the parasite. The selective toxicity of chloroquine in particular with respect to malarial plasmodia is also attributed to the ability of the parasitized red blood cells to concentrate the drug in amounts approximately 25 times greater than in normal erythrocytes. There is also a different hypothesis. Chloroquine has a high affinity for tissues of the parasite and is concentrated in its cytoplasm. As a weak base, it increases the pH of the intracellular lysosome and endosome. A more acidic medium in these organelles is needed for the parasite to affect mammalian cells. As a result, chloroquine inhibits growth and development of parasites.
Thus the main quality of chloroquine that exceeds all other antimalarial drug is its effect on erythrocytic schizonts (hematoschizotropic action). However, chloroquine also possesses amebicidal action. It has also been observed to have immunodepressive and antiarrhythmic properties.
It is used for all types of malaria, for chemotherapy, as well as for non-gastric amebiasis, and amebic abscesses of the liver. Synonyms of this drug are nivaquine, quingamine, delagil, resoquine, atroquine, and others.
View chapterPurchase book
Therapeutic Areas II: Cancer, Infectious Diseases, Inflammation & Immunology and Dermatology
K.M. Muraleedharan, M.A. Avery, in Comprehensive Medicinal Chemistry II, 2007
7.27.5.1.1.1 4-Aminoquinolines
Chloroquine (CQ, 2) was developed as a result of intense antimalarial drug development efforts in the USA during World War II, but the compound was familiar to Germans as early as 1934 under the name resochin.176 The safety, efficacy, and low cost brought chloroquine to the front lines to treat malaria, and it was used extensively for almost two decades after its first introduction in 1944–45 – until the parasites developed resistance in the 1960s. Amodiaquine (AQ, 3) is structurally related to CQ and is active against drug-resistant strains of P. falciparum.180,181 Even though it is more effective in parasite clearance than CQ, the clinical use of amodiaquine has been limited due to hepatotoxicity, agranulocytosis, and cross-resistance with CQ.182 Pyronaridine (4), an acridine derivative having resemblance to CQ and AQ, was first developed in China in 1970 and has proven to be very effective against all four Plasmodium species affecting humans, including drug-resistant strains.183–185
Members of the quinoline family in general exert their effect during the intraerythrocytic phase of the Plasmodium life cycle where the parasites show tremendous increase in metabolic activities and make use of host cell constituents for their biosynthetic needs.186 Hemoglobin catabolism, which occurs within the digestive food vacuoles, is one of the important pathways by which these parasites acquire amino acids. The involvement of three classes of enzymes, namely plasmepsins, falcipains, and falcilysin, has been implicated in this process, and each has gained attention as important chemotherapeutic targets (see below). As the redox-active heme moieties generated during hemoglobin degradation are toxic, the parasites biomineralize them to nontoxic hemozoin (malaria pigment). The ability of chloroquine to inhibit hemozoin formation suggests that this and related compounds may be interfering with the heme-detoxification process, making the parasites susceptible to oxidative stress by heme.187,188 The exact molecular details of this interference have been the subject of much discussion, and studies over the last several years tend to show that inhibition of hemozoin formation may either be due to the direct complexation of quinolines with hematin (hydroxyferriprotoporphyrin IX), an autooxidation product of heme, or due to a capping effect whereby the drug binds to the growing face of the hemozoin crystal, thus preventing its growth.189 The ability of members of this class to interfere with heme binding to histidine rich protein II (HRP-II), a protein involved in hemozoin formation,190 and a recent report showing chloroquine binding with lactate dehydrogenase191 point toward the possible existence of additional biological targets.
After the emergence of parasites that are resistant to chloroquine, a number of structure–activity relationship (SAR) studies were initiated to understand the stereoelectronic factors that are essential for the observed antiplasmodial action and those characteristics that contribute to parasitic resistance.186,192 The following general conclusions could be derived from these studies.
1.
The weak base property of chloroquine allows it is diffuse through plasma as well as vacuolar membranes. Its protonation under the acidic conditions of the food vacuole traps the molecule inside, leading to accumulation.
2.
The 4-amino quinoline nucleus is essential for complexation with hematin; but this alone is not sufficient for the inhibition of hemozoin formation. Simple quinoline or its 3-, 5-, 6-, or 8-amino derivatives do not form noticeable complexes with hematin, whereas its 2- and 4-amino substituted analogs do, and the major component of their stability arises from π–π interactions with the porphyrin system.193
3.
The aminoalkyl side chain in chloroquine helps in the accumulation of the drug inside the food vacuole and assists in the complexation of the quinoline nucleus with the porphyrin system. Modification of this side chain either by varying its length or attaching new chemical groups can circumvent chloroquine resistance.186,194 Although this is not a permanent solution to deal with resistance, such modifications have provided a number of interesting compounds with favorable therapeutic profiles, some of which are presented in Table 3.
Table 3. Various chloroquine analogs having improved activities against resistant strains of the parasite
CompoundsBiological characteristics
Ferroquine (5) is ∼22 times more potent than chloroquine against resistant strain of P. falciparum in vitro. After a 4-day in vivo test in mice infected with P. berghei (NS), only 20% showed recrudescence when observed for 60 days, whereas all mice treated with CQ showed recrudescence.195,196
Analogs such as 6, with shorter side chains (n=2–3) or larger chains (n=10–12) are almost 10 times more potent than CQ in vitro against resistant strains.197
Compound 7 showed an in vitro IC50 value of 49±14 nM (compared to 315±82 nM for CQ) against resistant strains of P. falciparum. However, this and related analogs with shorter side chains in general showed low in vivo efficacy and cross resistance with CQ.198
Bis-quinoline (8) showed an IC50 value of 1.4 nM against W2 clone of P. falciparum, (relative to 100 nM for CQ) and 100% cure when tested in vivo against P. berghei at 320 mg kg−1 dose.199,200
4.
The presence of chlorine at the 7-position is essential for the inhibition of hemozoin formation and its replacement with other halogens, such as iodine or bromine, do not significantly alter the biological activities of these compounds. Substitution of hydrogens in the quinoline ring with other groups influence the pKa of the ring as well as the side chain nitrogens and may indirectly affect the stability of the hematin–drug complex.197,201,202
An overview of various factors described above is pictorially presented in Figure 3.
3-s2.0-B008045044X002273-gr3.jpg


Figure 3. Structural features of chloroquine that contribute to its biological activity.
Since toxic side effects limited the use of amodiaquine, there have been several attempts to understand the molecular basis for this toxicity and to develop better candidates devoid of adverse effects. Available evidences indicate that the quinone-imine intermediate 9, formed as a result of metabolism of AQ in liver, alkylates various biological targets and is responsible for the toxicity.203
3-s2.0-B008045044X002273-fx3.gif


Introduction of various groups at the 3' and 5' positions of the amodiaquine side chain was initially considered as a strategy to increase the lipophilicity of drugs and to reduce the cross-resistance which normally arises after side chain metabolism.204,205 Several compounds in this series have been synthesized and analyzed (e.g., 1012).206 Even though these compounds are more potent than AQ in vitro and in vivo, toxicity remains a problem.207 In an elegant approach by O’Neill et al., a number of AQ analogs were synthesized by interchanging the position of hydroxy and diethyl-aminomethyl groups and were evaluated for antimalarial potencies and toxicities.208 It was assumed that the formation of the quinone-imine intermediate is electronically unfeasible in such systems, which, at the same time, possess necessary groups to interact with a biological target. This strategy has given very promising results in initial studies. Thus, compound 13 (isoquine) was found to be more potent than CQ and AQ without any signs of toxicity.
3-s2.0-B008045044X002273-fx4.gif


View chapterPurchase book
Approaches to Design and Synthesis of Antiparasitic Drugs
Satyavan Sharma, Nitya Anand, in Pharmacochemistry Library, 1997
7.1 Chloroquine (3) and amodiaquine
The key intermediate for synthesizing chloroquine, amodiquine and other 4-aminoquinoline drugs is 4,7-dichloroquinoline (91), which can be prepared by reacting m-chloroaniline (83) with diethyl oxaloacetate (EtO-CO-CH2-CO-COOEt) or ethoxymethylene malonic ester [EtO-CH = C(COOEt)2] as shown in scheme 1 [8,128–133].
1-s2.0-S0165720897800384-sc1.gif


Scheme 1. Reagents: (a) EtOCO-CH2CO-COOEt, (b) heat and separation of isomers (c) NaOH, heat, (d) heat (250 °C), (e) POCl3, (f) EtOCH = C(COOEt)2, (g) NaOH, heat, HCl
The synthesis of various 4-aminoquinoline antimalarials may be achieved by nucleophilic reaction of 91 with desired amines. Scheme 2 outlines the preparation of chloroquine (3) and amodiaquine (8) starting from 4,7-dichloroquinoline (91) [134–136].
1-s2.0-S0165720897800384-sc2.gif


Scheme 2. Reagents: (a) Ac2O; (b) HCHO, NHEt2 (c) HCl.
Another method to prepare chloroquine (3) involves reaction of 83 with methyl acrylate to get via 98 and 99 the adduct 100, which is converted into 7-chloro-1,2,3,4-tetrahydroquinoline-4-one (103). Reaction of 103 with novaldiamine (92) under dehydrogenating conditions gives chloroquine in about 25% overall yield [133] ( 3).
1-s2.0-S0165720897800384-sc3.gif


Scheme 3.
View chapterPurchase book
Drugs and Drug Leads Based on Natural Products for Treatment and Prophylaxis of Malaria
Søren Brøgger Christensen, in Evidence-Based Validation of Herbal Medicine, 2015
14.2.2.1.2 Chloroquine
The most successful drug and without comparison, chloroquine [20], was not developed using quinine as a scaffold but methylene blue (Figure 14.6). Ehrlich concluded that the ability of the Plasmodium parasite to take up this dye so efficiently had to cause a toxic effect on the parasite. He succeeded in curing two patients with malaria, but the drug was not sufficient efficient for general use [22]. Attempts to optimize the molecule led to chloroquine, the potential of which, however, was first realized after the Second World War [22]. Chloroquine became the drug of first choice in malaria therapy for more than two decades until resistance limited the use of the drug. The resistance is correlated to point mutations in the gene pfcrt [26]. The gene codes for a transporter PfCRT. Mutations in the gene like K76T has been assumed to remove a positively charged lysine from the transporter thereby enabling it to remove the positively charged chloroquine from the food vacuole [20]. Other PfCRT mutations, however, also induce resistance, suggesting a more complex situation. Like quinine, chloroquine prevents hemozoin formation [19]. An interesting feature of chloroquine is that the racemic form of this drug is used. The achirality of the hem molecule leads to the expectation that the two isomers have the same affinity toward the biological target, but obviously different distribution or metabolism of the two enantiomers cannot be excluded.
3-s2.0-B9780128008744000143-f14-06-9780128008744.jpg


Figure 14.6. Methylene blue and chloroquine. Chloroquine is used as a racemic mixture. The missing chirality of the target molecule (the precipitating hem) must mean that the two enantiomers have the same affinity for the target, but they may be differently metabolized or distributed in the body.
View chapterPurchase book
Antimicrobial Potentiation Approaches: Targets and Inhibitors
Thomas E. Renau, ... Ving J. Lee, in Annual Reports in Medicinal Chemistry, 1998
Protozoal
The emergence of resistance in the late 1950’s to chloroquine, an agent used to treat malaria, severely compromised the effectiveness and use of this drug (3). Studies have demonstrated that chloroquine resistance in Plasmodium falciparum, the causative organism, bears close similarities to the MDR phenotype described above and can be reversed by several drugs including verapamil (3). Two genes, pfmdr1 and pfmdr2, have been identified in P. falciparum which are approximately 60% homologous to the MDR genes found in mammalian cells (93,94). However, the exact role of these genes in the emergence of drug resistance remains controversial since there appears to be no correlation between the amplification of the pfmdr1 gene and resistance to chloroquine, in vitro (95).
With growing evidence that chloroquine resistance patterns are modulated via a P-gp-like transporter, studies to block the MDR phenotype and potentiate the activity of chloroquine have been reported. For example, chlorpheniramine reverses chloroquine resistance in 11 of 14 P. falciparum isolates at 625 nM with no potentiation observed against chloroquine-susceptible clones (96). In another study, fangchinoline, a bis-biphenylisoquinoline, potentiated the activity of chloroquine against a chloroquine-resistant P. falciparum strain in vitro (97). The compound also potentiated the activity of vinblastine in an MDR cell line approximately 90-fold, indicating it may inhibit the P-gp transporter. WR268954 (10), a pyrrolidino alkyiamine, decreases the IC50 of chloroquine for drug resistant P. falciparum 90-fold when compared to chloroquine alone (98). The compound has weak intrinsic antimalarial activity and may act as a competitive inhibitor of the binding of chloroquine to the putative transporter.
1-s2.0-S0065774308610775-gr7.gif


View chapterPurchase book
Sun Protection in Man
Homer S. Black, Lesley E. Rhodes, in Comprehensive Series in Photosciences, 2001
30.3.1 Antimalarials
In the past, the 4-amino-quinolines, including chloroquine and hydroxychloroquine, were frequently employed as therapeutic agents for a broad spectrum of light-sensitive disorders. These included systemic lupus erythematous, polymorphic light eruption (PLE), solar urticaria, and porphyria cutanea tarda [34]. Chloroquine, shown here, is a reasonably effective absorber of UV light and has a propensity to accumulate in the epidermis.
1-s2.0-S1568461X0180065X-fx2.jpg


Chloroquine
When excreted in sweat after UV exposure, it demonstrates a spectral shift with increased absorption in the 270–310 nm range. An early study reported that chloroquine, when applied topically to human skin, produced a significant decrease in the erythema response, suggesting a strong screening effect [35]. Knox and Freeman [36] demonstrated that orally ingested chloroquine inhibited the recurrence of basal cell carcinomas in a double-blind study of over 200 tumour-prone patients (treated for previous basal cell carcinomas). However, this protective effect did not extend to squamous cell carcinomas and statistical significance washed out after 17 months of the three-year follow-up period. Moreover, Cahn et al. [37] showed that systemically administered chloroquine phosphate did not alter the MED response in patients suffering from PLE. Nor were they able to demonstrate differences in UV absorption of epidermis obtained from patients systemically administered control vehicle or chloroquine. Neither could they detect levels of the drug in the epidermis sufficient to act as a physical sunscreen. They concluded that chloroquine photoprotection could not be due to a light-filtering mechanism [38]. Thus, while the mode of photoprotective action of the antimalarials remains in question, the occasional severe [39] and irreversible side-effects (notably retinopathy) preclude these agents as general photoprotectants [40].
View chapterPurchase book
Bionanofibers in drug delivery*
Xin Zhao, ... Wenguo Cui, in Nanobiomaterials in Drug Delivery, 2016
12.2.3.2 Hydrophilic drugs
Hydrophilic drugs, such as the chemotherapeutic drug DOX and antimalarial chloroquine (CQ), can be dissolved in hydrophilic polymers such as gelatin, PEG, PVA, using common solvents such as mixing solution of water and HFIP for electrospinning. Hydrophilic drugs released from hydrophilic polymer usually exhibit a large initial burst release and a short release period. To circumvent this problem, hydrophobic polymers can be used as an alternative drug carrier; this, however, precludes the use of a common solvent for both polymer and drug. In this case, hydrophilic drugs can first be loaded into drug vehicles, such as MSNs, which are then dispersed in the polymer solution before blending electrospinning (Qiu et al., 2013; Zhao et al., 2015a,c). For instance, Qiu et al. fabricated PLLA–MSN–DOX composite nanofibers, which were found to have a high drug-loading capacity (Qiu et al., 2013) (Figure 12.7). Moreover, the rate and duration of drug release could be tuned by modifying drug and/or MSN concentrations. They demonstrated that the inclusion of DOX-loaded MSNs within the nanofibers resulted in a higher antitumor effect in vitro, likely due to a prolonged release and action of the drug.
3-s2.0-B9780323428668000125-f12-07-9780323428668.jpg


Figure 12.7. Fabrication of PLLA/DOX@MSNs electrospun composite nanofibers and its drug release profile.
Modified from Qiu et al. (2013).
In order to challenge the inability to dissolve drug and polymer in a common solvent, an alternative approach involves dissolution in two immiscible solvents before the mixture is subject to either coaxial or emulsion electrospinning. For example, Zhou et al. loaded antimalarial CQ into HA sol nanoparticles, which were then encapsulated in PLLA nanofibers by microsol/emulsion electrospinning. In this strategy, HA sol nanoparticles successfully preserved the bioactivity of CQ by minimizing its contact with the organic solvent. Also, nanofibers with core–shell morphology were obtained as the soft HA sol nanoparticles were stretched. An in vitro release study demonstrated a drug release period of longer than 40 days. It was further observed that the release rate was positively correlated to the concentrations of HA sol nanoparticles and CQ drug (Zhou et al., 2014).
View chapterPurchase book
Medicinal properties of marine plants
Ranjeet Kumar, Ashish Kumar Tewari, in Synthesis of Medicinal Agents from Plants, 2018
11.4.3 Pharmacological Activity of Aplidiopsamine A
Aplidiopsamine A 11.48 was tested for its ability to inhibit the growth of chloroquine sensitive (3D7) and resistant (Dd2) strains of the malarial parasite, Plasmodium falciparum. Human cell toxicity was assessed using the normal cell line HEK-293. Aplidiopsamine A was equally active against the two malarial parasite strains (IC50 = 1.47 (3D7) and 1.65 μM (Dd2)), and only showed growth inhibition against HEK-293 cells at higher doses, only reaching ∼100% inhibition at the highest dose tested (120 μM). Aplidiopsamine A, therefore, represents a novel lead structure that could be further developed into a drug to treat drug-resistant malarial infections (Carroll et al., 2010).
View chapterPurchase book
Antimalarial Agents
Eric Scholar, in xPharm: The Comprehensive Pharmacology Reference, 2007
Targets-Pharmacodynamics
Antimalarial drugs have a variety of targets and mechanisms of action. Many, like chloroquine, amodiaquine, mefloquine, and quinine act on heme in the parasitic food vacuole. In this way, they prevent the polymerization of hemoglobin, which can be toxic to the plasmodium parasite. Others are folate antagonists. Some of the drugs in this class, like pyrimethamine and proguanil, are selective inhibitors of parasitic dihydrofolate reductase, whereas the sulfonamides and sulfones are PABA antagonists and inhibit dihydropteroate synthetase. A third group of antimalarials, such as artemether, produces free radicals that destroy the malaria parasite or inhibit parasitic electron transport. Primaquine may also generate reactive oxygen species that may interfere with electron transport in the parasite. Finally, there are antibiotics, such as doxycycline, that selectively inhibit protein synthesis in the parasite Tracy and Webster (2001), Scholar and Pratt (2000), Olliaro (2001), Foley and Tilley (1998). The specific target varies with the antimalarial agent. The major of these drugs are most effective against the erythrocytic form of the parasite, although primaquine acts against the hepatic stages and latent tissue forms. For the blood schizoniticides, heme is a frequent target, as is folic acid synthesis, and mitochondrial electron transport.
View chapterPurchase book
Nanobiomaterials Architectured for Improved Delivery of Antimalaria Drugs
B.A. Aderibigbe, H.E. Mukaya, in Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016
Abstract
The increasing occurrence of malaria parasites’ resistance to the presently used antimalarial drugs, such as chloroquine, is hindering the fight against malaria. Factors contributing to the drug resistance of antimalarial drugs are: incorrect dosage, patients’ noncompliance due to inconvenient dosage schedules, poor drug quality, drug interactions, poor or erratic absorption, reduced uptake of the drug into the parasite, and an increased efflux of the drug out of the parasite. Applications of biomaterials for the design and preparation of drug-delivery systems have been found to improve the therapeutic effects of antimalarial drugs such as: reducing drug resistance, reducing drug toxicity, and a controlled drug-release mechanism. In this chapter, we evaluate the therapeutic efficacy of the presently developed nanobiomaterial-based delivery systems used for antimalarial drugs.
View chapterPurchase book
Elsevier logo
We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the use of cookies.
Copyright [emoji767] 2020 Elsevier B.V. or its licensors or contributors. ScienceDirect [emoji768] is a registered trademark of Elsevier B.V.

Kwa haraka sijaona sababu ya kucopy mtandaoni ...kama upo smart mkuu in 5lines ungenitajia mechanism ya drug design na drug targets simply tu[emoji28]


Sent from my iPhone using JamiiForums
 
Mkuu, mbona unatudanganya? Jaribu kufanya simple research kabla ya kushusha uzi mrefu uliojaa uongo.

Ingekua vizur mkuu uwe specific na facts tuweke mezani?
Nimepitia hili andiko vizuri


Sent from my iPhone using JamiiForums
 
Kwa haraka sijaona sababu ya kucopy mtandaoni ...kama upo smart mkuu in 5lines ungenitajia mechanism ya drug design na drug targets simply tu[emoji28]


Sent from my iPhone using JamiiForums
Hiyo post nzima imeelezea method zote zinatumika kuipata dawa ya Chloroquine, sema wewe umeziogopa hizo organic reaction mechanisms na hili linasibitisha wazi kuwa organic inakupita kushoto hivyo huwezi kufanya uvumbuzi wa dawa. Mimi hicho kiriport ni kama one page tu hapana report hapo. na hivyo vimechanism kwangu ni uji shida ya wataalamu wetu organic chemistry yenyewe hawaijui wapo wapo tu.
 
Ingekua vizur mkuu uwe specific na facts tuweke mezani?
Nimepitia hili andiko vizuri


Sent from my iPhone using JamiiForums
Sijafuatilia sana, ila Chuo Kikuu nilichosoma Health na Medical Lab Scientists walikuwa wanasoma Molecular Biology.

Hao hao pia wanafanya kazi kwenye Molecular Laboratories nyingi tu wakati sio Biotechnologists.

Fuatilia.
 
Sometimes Kama fani n za kada moja Kuna mambo wanaingiliana hats kazi.....mfano watu wa engineering,health,education,environment ,hizi sub division/division n nying nw days mfano kwenye elimu Kuna class teacher,special needs education,curriculum developer,wakaguzi,management and administration, lakini wote wanaitwa walimu.
 
Utangulizi
Bioteknolojia ni aina ya teknolojia inayotumia elimu ya biolojia kwa manufaa ya binadamu. Ni teknolojia ya uvumbuzi wa mambo mbalimbali kwa manufaa ya binadamu, kwenye upande wa afya, kilimo, mazingira na viwanda na ilianza kutumika tangu mwaka . 1919 na mwanasayansi mjerumani aitwae Karl Ereky ikiwa na makampuni (biotech companies) zaidi ya 2300 USA, zaidi ya makampuni 100 India, Canada, China, Ujerumani, Italia hadi afrika ya kusini. Watalamu wa bioteknolojia wanazalishwa na vyuo vingi duniani kwa sababu ni uwanja (field) inayokua kwa kasi sana kutokana na uhitaji wake kua mkubwa.

Mtalamu wa bioteknolojia ameandaliwa kua mtafiti katika sayansi ya maisha (Life Science) huyu ndie anaeleta utatuzi katika maeneo mbalimbali hasa afya ya mwanadamu, uvumbuzi wake unatumika katika kuboesha mbinu za matibabu, mbinu za upimaji magonjwa, nk kwa sababu ni mwanasayansi pekee aliesoma sayansi katika ngazi ya MOLEKULI (MOLECULAR LEVEL).

Historia fupi
Hizi ni mifano michache kati ya maelfu ya uvumbuzi katika bioteknolojia:

1928 Alexander Fleming aligundua fangasi (fungi) wanaoweza kuzuia ukuaji au kuua bakteria. Dawa zote za penisilini kama amoxicillin, ampicillin, nk. zimetokana na uvumbuzi wake.

1944 Kary Mullis aligundua mbinu iitwayo Polymerase chain reaction (PCR) inayotumika kupimia magonjwa mbalimbali mfano . COVID 19, HIV, Hepatitis B, Dengue, na mengine mengi, mbinu hii ni ukombozi wa dunia katika afya ya mwanadamu kutokana na ufanisi wake.

1978 Insulini bandia (artificial insulin) iligunduliwa na mtalamu wa bioteknolojia na mpaka leo wagonjwa wa kisukari (diabetic patients with hyperglycemia) wanaitumia duniani kote kushusha kiwango cha sukari kwenye damu.

1950 Alec john Jeffreys alivumbua mbinu ya kumtambua binadamu au viumbe wengine kwa kutumia vinasaba (DNA) mbinu inafahamika kitalamu kama genetic fingerprinting and DNA profiling ambayo inatumika dunia nzima na watu wa usalama kama polisi kuwatambua wahalifu mfano F.B.I marekani wako vizuri sana katika hili.

Majukumu ya mtalamu wa bioteknolojia kwa upande wa afya.

Kubuni mbinu mpya za upimaji wa magonjwa, zenye ufanisi mkubwa na zinazoweza kugundua maambukizi ya muda mfupi sana mfano Polymerase chain reaction (PCR) na vipimo vya haraka (Rapid tesk kits). Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.

Kugundua na kuzalisha dawa na kinga/chanjo (Vaccine) za magonjwa mbalimbali. Ugunduzi wa madawa na chanjo ni mchakato mrefu wa tafiti na majaribio ya maabara, na si jukumu la tabibu (daktari), ni jukumu la wana bioteknolojia (Laboratory scientists, waliosomea tafiti).

Utengenezaji wa hataki (Reagents) za maabara zinazotumika kupimia magonjwa katika maabara za binadamu na wanyama (clinical laboratory reagents). Mfano monoclonal antibodies and enzymes. Serikali inatumia pesa nyingi sana kununua hizi hataki kutoka nje ya nchi.

Kuzuia tatizo la aleji kwa kufanya uoanishaji wa dawa na genetiki ya mgonjwa (Pharmacogenetics/ personalized medicine). Wagonjwa wengi wanapewa dawa ambazo zinawaletea madhara (aleji) kutokana na kutokujua nani anapaswa kupewa dawa gani kulingana na asili ya miili yao. Hapa biotechnologist anasimama kama mshauri wa daktari kabla ya kumpatia dawa mgonjwa.

Wapo wagonjwa wanatibiwa bila kupona (Infectious diseases), kitalamu tatizo hili linajulikana kama drug resistance. Tatizo la usugu linatatulika kwa mbinu za kibioteknolojia mfano DNA sequencing and alignment na uoteshaji wa vimelea vya magonjwa (bakteria na fangasi) maabara kisha kuangalia vinaweza kufa kwa dawa gani (microbial culture), na kupima wingi wa vimerea katika mwili mfano HIV viral load tests (HVL) na early infant diagnosis (EID).

Kufanya shughuli zote za vinasaba (DNA au RNA), ikiwa ni pamoja na kutibu magonjwa kwa njia za jenetiki, (gene therapy), kumechi kati ya mzazi na mtoto, au ndugu na ndugu kupitia DNA. Hii inaondoa utata katika kujua nani ni mzazi wa nani au nani ni ndugu wa nani mfano janga la moto la msanvu morogoro.

Kufanya tafiti za afya ya binadamu na kutoa elimu kwa watumishi wa afya / kutoa ripoti za tafiti kwa watumishi wengine wa wizara za afya. (Madaktari, nk).

Mgawanyiko wa majukumu baina ya watumishi wa wizara ya afya:

WATAFITI (researchers)
: Hili ndilo kundi la kwanza linalotoa majawabu na mbinu mpya za kupambana na magonjwa mbalimbali, hili ni kundi la wanasayansi waliobobea katika maeneo mbalimbali (classified scientists) mfano: Microbiologists, Molecular biologists, biochemists, chemists(Pharmacists), Immunologists, Bioinformaticians, Bio Statisticians, epidemiologists, Physicist and Botanists. Unaposema Biotechnologist ni mwanasayansi alieandaliwa katika maeneo yote tajwa, hivyo anauwezo mkubwa sana katika kufanya tafiti.

NB: Katika eneo la madawa mfamasia (Pharmacist) amebobea sana katika kemia ya madawa, hivyo hufanya kazi na mtaalamu wa biolojia na fizikia katika uvumbuzi. Biotechnologists wanaweza fanya kazi zote za maabara ya binadamu (clinical laboratory activities), ila ni kuanzia hatua ya uchakataji wa sampuli na si kuanzia hatua ya kuonana na mgonjwa moja kwa moja japo baadhi ya vyuo katika mitaala yao vinawaongezea mafunzo ya kuwahudumia wagonjwa moja kwa moja.

WATOA HUDUMA ZA AFYA (Medical personel):
Hili ni kundi la watalamu wa afya walioandaliwa mahususi kwa ajili ya kutoa huduma za afya moja kwa moja kwa mgonjwa, watalamu hawa wanategemea moja kwa moja majibu na mbinu kutoka kwa watafiti ili kuzitumia katika kutibu wagonjwa.

Daktari (Medical doctor),
Huyu amefundishwa masomo mbalimbali yaliyopatikana kutokana na tafiti za wanasayansi mbalimbali tajwa hapo juu. Daktari wa binadamu si mtafiti/mvumbuzi, ameandaliwa kumtibu mgonjwa kwa kutumia mbinu zilizopitishwa na kukubalika baada ya tafiti mbalimbali. Na ni daktari pekee ndie anaejua namna ya kumtibu mgonjwa kwa kuzingatia kanuni na taratibu zote za jinsi ya kutibu ili kuokoa maisha. Kitalamu ni daktari pekee ndie amebobea katika kutibu ila si kutafiti na kufanya uvumbuzi isipokua yule alie specialize katika research na kuachana na kutibu moja kwa moja.

Mteknolojia wa maabara ya binadamu (medical laboratory technologist):
Hili ni kundi la watalamu walioandaliwa kwaajili ya kufanya upimaji wa magonjwa mbalimbali ya binadamu (diseases diagnosis), hawa pia ni unclassified scientists hawajaandaliwa kua wavumbuzi au watafiti, wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.

Muuguzi (Nurse):
Hili ni kundi la wataalamu walioandaliwa kuwatibu wagonjwa kwa kufuata maagizo au kujadiliana na daktari, kufanya uangalizi wa wagonjwa muda wote, kufuatilia hali zao na mabadiliko yeyote pindi wanapokua wakipatiwa matibabu, hawa ni watu muhimu sana.

NB: Kundi la kwanza la watafiti ni kundi ambalo hua halijulikani licha ya kua na mchango mkubwa sana katika kufanikisha matibabu ya mgonjwa, kwa sababu Daktari ndie mtu wa mwisho mtoa maamuzi hivyo jamii inampa nafasi kubwa sana na kufikiri ndie anaejua kila kitu, na hata kufikiri mchakato wa upatikanaji wa dawa mpya au chanjo ni jukumu lake kitu ambacho sio kweli na kwamba hilo ni jukumu la watafiti.

Changamoto iliyopo Tanzania kwa wataalamu wa Bioteknolojia(WATAFITI).
Wizara ya afya haitambui uwepo wa wataalamu hawa, ambao ni kitovu cha tafiti za afya duniani kote. Wizara ya afya haijawapatia nafasi ya kufanya kazi zao katika maeneo yao, Wizara haijawapatia leseni za kufanya kazi zao. Hakuna mfumo wa kuwatambulisha moja kwa moja.

Vipimo vinavyohusisha vinasaba (DNA /RNA) Tanzania havifanywi na watalamu wa bioteknolojia ambao ndio walioandaliwa kufanya vipimo hivyo na wizara ya afya haitaki kuwaona wakifanya kazi katika maabara za binandamu licha ya kua na uwezo wa kufanya hivyo na bado haitoi ufafanuzi wakafanye kazi zao wapi.

Hitimisho:
Ni jukumu la wizara ya afya Tanzaia kuwapatia leseni wataalamu wa bioteknolojia ili watatue changamoto za wizara ya afya katika utoaji wa huduma za afya kama ambavyo dunia nzima inawatumia vizuri. Tubadilike na teknolojia

ALIANDIKA
Modern Scientist :
Moshi RN Contact : 0758406251 Email moshingamba@gmail.com
Kuna medical lab scientists (degree) hawa wanaweza kufanya utafiti tofauti na laboratory technologists

Sent using Jamii Forums mobile app
 
Kama unaweza niwekea vyuo vinavyotoa itanisaidia Sana mkuu
Arusha tech wanatoa kwa level ya diploma na degree. Kwa level ya degree hawachukui any direct student (student from A'level) lazma uwe umesoma/umepitia diploma ya aina flani (nimeeka attachment ya vigezo)

DIT wanatoa pia kwa level ya Diploma pekee. Kwa maelezo zaidi Ingia hapa Admission Regulations

MUHAS wameanza chukua students kusomea Biomedical Engineering kwa level ya degree anzia last year Intake (November 2019) kwa MUHAS wanahitaji student aliyepitia A'level (PCM) + waliopitia diploma pia (Nimeeka attachment)

Nzuri zaidi (both bachelor & diploma) ni ya Arusha Tech since unasomea Electrical & biomedical at once (chuo cha tech kile so kuna vitu vya ziada utapata tofauti na MUHAS) Ila tatizo kwa bachelor ni hadi upitie diploma.

Maamuzi ni yako mkuu NIMO PRDCTZR

*Me sio mzuri sana wa kujielza so kama una swali zaidi unaweza uliza.
Screenshot_20200406-215006.jpeg
Screenshot_20200406-215918.jpeg
Screenshot_20200406-220458.jpeg
 
Arusha tech wanatoa kwa level ya diploma na degree. Kwa level ya degree hawachukui any direct student (student from A'level) lazma uwe umesoma/umepitia diploma ya aina flani (nimeeka attachment ya vigezo)

DIT wanatoa pia kwa level ya Diploma pekee. Kwa maelezo zaidi Ingia hapa Admission Regulations

MUHAS wameanza chukua students kusomea Biomedical Engineering kwa level ya degree anzia last Intake (November 2019) kwa MUHAS wanahitaji student aliyepitia A'level (PCM) + waliopitia diploma pia (Nimeeka attachment)

Nzuri zaidi (both bachelor & diploma) ni ya Arusha Tech since unasomea Electrical & biomedical at once (chuo cha tech kile so kuna vitu vya ziada utapata tofauti na MUHAS) Ila tatizo kwa bachelor ni hadi upitie diploma.

Maamuzi ni yako mkuu NIMO PRDCTZR

*Me sio mzuri sana wa kujielza so kama una swali zaidi unaweza uliza.View attachment 1410836View attachment 1410841View attachment 1410848
Yamenitoaha mkuu
 
Utangulizi
Bioteknolojia ni aina ya teknolojia inayotumia elimu ya biolojia kwa manufaa ya binadamu. Ni teknolojia ya uvumbuzi wa mambo mbalimbali kwa manufaa ya binadamu, kwenye upande wa afya, kilimo, mazingira na viwanda na ilianza kutumika tangu mwaka . 1919 na mwanasayansi mjerumani aitwae Karl Ereky ikiwa na makampuni (biotech companies) zaidi ya 2300 USA, zaidi ya makampuni 100 India, Canada, China, Ujerumani, Italia hadi afrika ya kusini. Watalamu wa bioteknolojia wanazalishwa na vyuo vingi duniani kwa sababu ni uwanja (field) inayokua kwa kasi sana kutokana na uhitaji wake kua mkubwa.

Mtalamu wa bioteknolojia ameandaliwa kua mtafiti katika sayansi ya maisha (Life Science) huyu ndie anaeleta utatuzi katika maeneo mbalimbali hasa afya ya mwanadamu, uvumbuzi wake unatumika katika kuboesha mbinu za matibabu, mbinu za upimaji magonjwa, nk kwa sababu ni mwanasayansi pekee aliesoma sayansi katika ngazi ya MOLEKULI (MOLECULAR LEVEL).

Historia fupi
Hizi ni mifano michache kati ya maelfu ya uvumbuzi katika bioteknolojia:

1928 Alexander Fleming aligundua fangasi (fungi) wanaoweza kuzuia ukuaji au kuua bakteria. Dawa zote za penisilini kama amoxicillin, ampicillin, nk. zimetokana na uvumbuzi wake.

1944 Kary Mullis aligundua mbinu iitwayo Polymerase chain reaction (PCR) inayotumika kupimia magonjwa mbalimbali mfano . COVID 19, HIV, Hepatitis B, Dengue, na mengine mengi, mbinu hii ni ukombozi wa dunia katika afya ya mwanadamu kutokana na ufanisi wake.

1978 Insulini bandia (artificial insulin) iligunduliwa na mtalamu wa bioteknolojia na mpaka leo wagonjwa wa kisukari (diabetic patients with hyperglycemia) wanaitumia duniani kote kushusha kiwango cha sukari kwenye damu.

1950 Alec john Jeffreys alivumbua mbinu ya kumtambua binadamu au viumbe wengine kwa kutumia vinasaba (DNA) mbinu inafahamika kitalamu kama genetic fingerprinting and DNA profiling ambayo inatumika dunia nzima na watu wa usalama kama polisi kuwatambua wahalifu mfano F.B.I marekani wako vizuri sana katika hili.

Majukumu ya mtalamu wa bioteknolojia kwa upande wa afya.

Kubuni mbinu mpya za upimaji wa magonjwa, zenye ufanisi mkubwa na zinazoweza kugundua maambukizi ya muda mfupi sana mfano Polymerase chain reaction (PCR) na vipimo vya haraka (Rapid tesk kits). Kipimo cha PCR kinatakiwa kufanywa na mtaalamu wa bioteknolojia tu maana yeye ndie mtalamu katika eneo hilo.

Kugundua na kuzalisha dawa na kinga/chanjo (Vaccine) za magonjwa mbalimbali. Ugunduzi wa madawa na chanjo ni mchakato mrefu wa tafiti na majaribio ya maabara, na si jukumu la tabibu (daktari), ni jukumu la wana bioteknolojia (Laboratory scientists, waliosomea tafiti).

Utengenezaji wa hataki (Reagents) za maabara zinazotumika kupimia magonjwa katika maabara za binadamu na wanyama (clinical laboratory reagents). Mfano monoclonal antibodies and enzymes. Serikali inatumia pesa nyingi sana kununua hizi hataki kutoka nje ya nchi.

Kuzuia tatizo la aleji kwa kufanya uoanishaji wa dawa na genetiki ya mgonjwa (Pharmacogenetics/ personalized medicine). Wagonjwa wengi wanapewa dawa ambazo zinawaletea madhara (aleji) kutokana na kutokujua nani anapaswa kupewa dawa gani kulingana na asili ya miili yao. Hapa biotechnologist anasimama kama mshauri wa daktari kabla ya kumpatia dawa mgonjwa.

Wapo wagonjwa wanatibiwa bila kupona (Infectious diseases), kitalamu tatizo hili linajulikana kama drug resistance. Tatizo la usugu linatatulika kwa mbinu za kibioteknolojia mfano DNA sequencing and alignment na uoteshaji wa vimelea vya magonjwa (bakteria na fangasi) maabara kisha kuangalia vinaweza kufa kwa dawa gani (microbial culture), na kupima wingi wa vimerea katika mwili mfano HIV viral load tests (HVL) na early infant diagnosis (EID).

Kufanya shughuli zote za vinasaba (DNA au RNA), ikiwa ni pamoja na kutibu magonjwa kwa njia za jenetiki, (gene therapy), kumechi kati ya mzazi na mtoto, au ndugu na ndugu kupitia DNA. Hii inaondoa utata katika kujua nani ni mzazi wa nani au nani ni ndugu wa nani mfano janga la moto la msanvu morogoro.

Kufanya tafiti za afya ya binadamu na kutoa elimu kwa watumishi wa afya / kutoa ripoti za tafiti kwa watumishi wengine wa wizara za afya. (Madaktari, nk).

Mgawanyiko wa majukumu baina ya watumishi wa wizara ya afya:

WATAFITI (researchers)
: Hili ndilo kundi la kwanza linalotoa majawabu na mbinu mpya za kupambana na magonjwa mbalimbali, hili ni kundi la wanasayansi waliobobea katika maeneo mbalimbali (classified scientists) mfano: Microbiologists, Molecular biologists, biochemists, chemists(Pharmacists), Immunologists, Bioinformaticians, Bio Statisticians, epidemiologists, Physicist and Botanists. Unaposema Biotechnologist ni mwanasayansi alieandaliwa katika maeneo yote tajwa, hivyo anauwezo mkubwa sana katika kufanya tafiti.

NB: Katika eneo la madawa mfamasia (Pharmacist) amebobea sana katika kemia ya madawa, hivyo hufanya kazi na mtaalamu wa biolojia na fizikia katika uvumbuzi. Biotechnologists wanaweza fanya kazi zote za maabara ya binadamu (clinical laboratory activities), ila ni kuanzia hatua ya uchakataji wa sampuli na si kuanzia hatua ya kuonana na mgonjwa moja kwa moja japo baadhi ya vyuo katika mitaala yao vinawaongezea mafunzo ya kuwahudumia wagonjwa moja kwa moja.

WATOA HUDUMA ZA AFYA (Medical personel):
Hili ni kundi la watalamu wa afya walioandaliwa mahususi kwa ajili ya kutoa huduma za afya moja kwa moja kwa mgonjwa, watalamu hawa wanategemea moja kwa moja majibu na mbinu kutoka kwa watafiti ili kuzitumia katika kutibu wagonjwa.

Daktari (Medical doctor),
Huyu amefundishwa masomo mbalimbali yaliyopatikana kutokana na tafiti za wanasayansi mbalimbali tajwa hapo juu. Daktari wa binadamu si mtafiti/mvumbuzi, ameandaliwa kumtibu mgonjwa kwa kutumia mbinu zilizopitishwa na kukubalika baada ya tafiti mbalimbali. Na ni daktari pekee ndie anaejua namna ya kumtibu mgonjwa kwa kuzingatia kanuni na taratibu zote za jinsi ya kutibu ili kuokoa maisha. Kitalamu ni daktari pekee ndie amebobea katika kutibu ila si kutafiti na kufanya uvumbuzi isipokua yule alie specialize katika research na kuachana na kutibu moja kwa moja.

Mteknolojia wa maabara ya binadamu (medical laboratory technologist):
Hili ni kundi la watalamu walioandaliwa kwaajili ya kufanya upimaji wa magonjwa mbalimbali ya binadamu (diseases diagnosis), hawa pia ni unclassified scientists hawajaandaliwa kua wavumbuzi au watafiti, wameandaliwa kutoa huduma za upimaji magonjwa, kwa sababu hawakuandaliwa katika sayansi ya MOLEKULI (Molecular level science) wao wanasoma applied sciences.

Muuguzi (Nurse):
Hili ni kundi la wataalamu walioandaliwa kuwatibu wagonjwa kwa kufuata maagizo au kujadiliana na daktari, kufanya uangalizi wa wagonjwa muda wote, kufuatilia hali zao na mabadiliko yeyote pindi wanapokua wakipatiwa matibabu, hawa ni watu muhimu sana.

NB: Kundi la kwanza la watafiti ni kundi ambalo hua halijulikani licha ya kua na mchango mkubwa sana katika kufanikisha matibabu ya mgonjwa, kwa sababu Daktari ndie mtu wa mwisho mtoa maamuzi hivyo jamii inampa nafasi kubwa sana na kufikiri ndie anaejua kila kitu, na hata kufikiri mchakato wa upatikanaji wa dawa mpya au chanjo ni jukumu lake kitu ambacho sio kweli na kwamba hilo ni jukumu la watafiti.

Changamoto iliyopo Tanzania kwa wataalamu wa Bioteknolojia(WATAFITI).
Wizara ya afya haitambui uwepo wa wataalamu hawa, ambao ni kitovu cha tafiti za afya duniani kote. Wizara ya afya haijawapatia nafasi ya kufanya kazi zao katika maeneo yao, Wizara haijawapatia leseni za kufanya kazi zao. Hakuna mfumo wa kuwatambulisha moja kwa moja.

Vipimo vinavyohusisha vinasaba (DNA /RNA) Tanzania havifanywi na watalamu wa bioteknolojia ambao ndio walioandaliwa kufanya vipimo hivyo na wizara ya afya haitaki kuwaona wakifanya kazi katika maabara za binandamu licha ya kua na uwezo wa kufanya hivyo na bado haitoi ufafanuzi wakafanye kazi zao wapi.

Hitimisho:
Ni jukumu la wizara ya afya Tanzaia kuwapatia leseni wataalamu wa bioteknolojia ili watatue changamoto za wizara ya afya katika utoaji wa huduma za afya kama ambavyo dunia nzima inawatumia vizuri. Tubadilike na teknolojia

ALIANDIKA
Modern Scientist :
Moshi RN Contact : 0758406251 Email moshingamba@gmail.com
Uko vizuri nimeipenda hii.

Sent using Jamii Forums mobile app
 
Back
Top Bottom