zerominus10
JF-Expert Member
- Aug 25, 2022
- 8,142
- 13,721
Sawa wewe si umefanya hiki vice is true au huonihapo njia simple Robber 1 & 2 wavuke ng'ambo, kule Robber 1 amuache Robber 2! Robber 1 akirudi anachukua bag lake $3000 anavuka mara ya pili, no 2 anarudi mwenyewe anachukua pesa yake @5000 anavuka tena kule ng'ambo analiacha bag na namba 1 anarudi anamchukua Robber 3 wanavuka tena, kule anashuka Robber 2, Robber 3 anafata bag lake $8000 trip ya mwisho wanaenda kula shushu na hivi Sirro kastaafu π
Huoni hapooooo au umeangalia kwa kutumia JICHO lipi mkuu?Okay they will do this
Kwanza ntakomaa na rule 1 na rule 3 na rule 2 Mpaka mwisho
Rule 1 inasema nanukuu
Kivuko kinaweza beba wawili au mmoja kati ya hao watatu pamoja na begi 1 tu
Rule 2 inasema nanukuu
Hakuna jambazi ambae atabaki peke ake na pesa ambayo ni zaidi ya ile aliyoiba
Rule 3 inasema nanukuu
Majambazi wawili hawatakiwi kubaki pamoja na kiasi ambacho ni zaidi ya jumla ya kile walichoiba
Twende sasa na mchezo:
SOLUTION
Robber 1: kaiba $3,000
Robber 2: kaiba $5,000
Robber 3: kaiba $8,000
Cha kwanza tutatumia rule 1 & 2..
Tutaanza na rule 1 & 3:
Robber 1 na Robber 2 wataingia kwenye kivuko na pesa begi 1 $8000 km zilivyo wakati Robber 3 atabaki na $5000+$3000
Wakifika ngambo hapa
Tutatumia rule 2:
Ambapo Robber 2 atashuka na kubaki peke ake (akiwa bila mfuko)
Kisha Robber 1 atarudi na $8000 kwenda kwa Robber 3
Tutatumia rule 1, 2 & 3:
Robber 1 atamchukua Robber 3 kwenye kivuko wakiwa na $5,000
Alafu $3000 na $8000 wataziacha
Kisha watavuka Mpaka kwa Robber 2 watampatia $5000 za kwake
Tutatumia rule 1 & 3:
Kisha watarudi Mpaka ngambo watachukua $3000
Kisha Robber 1 na Robber 3 wakiwa na $3000 watarudi kwenda ngambo kwa Robber 2 wakiwa wameacha $8000 peke ake
Robber 1 atashuka akiwa na $3000 za kwake
Tutatumia rule 3:
Robber 1 atabaki na Rober 2
Hakuna pesa iliyozidi
Tutatumia rule 1,2 & 3:
Baada ya hapo Robber 3 atarudi peke ake na kivuko kwenda kuchukua $8000 waliyoiacha
Kisha atarudi Mpaka ngambo na watatokomea kusikoonekana
Na mchezo umeishia hapo
Problem solved β
Game over
π
π€«π€ͺβ