Namba hii ina maana gani? 1.6180339887.

Sokoro waito

JF-Expert Member
Joined
Nov 21, 2014
Posts
2,201
Reaction score
2,599
Heko kwenu wadau,

Wakati fulani nilipokuwa nasoma kitabu cha THINK LIKE A CHAMPION kilichoandikwa na Raisi Donald J. Trump nilisoma mahali fulani ambapo aliitaja hii namba 1.6180339887 kama GOLDEN RATIO ambayo imewahi kutumiwa na watu mbalimbali kwenye kazi zao, kwa mfano amemtaja DA VINCI.

Lakini pia ameielezea namba hii kwa ufupi sana huku akisisitiza kuwa ni namba ya maajabu. Trump akaandika pia kuwa yeye hashauri watu kuamini katika maajabu ya namba ili kufanikiwa katika uvumbuzi na kazi zao bali wafanye kazi kwa bidii na akili ili wafanikiwe.

sasa wadau, kama unajua chochote kuhusu namba hiyo karibu ututoe tongotongo kwa ujuzi wako.
 
Siti ya mbele kabisa hapa
Nitarudi kuielezea inafanyaje kazi...
Huyu mshenzi ndio alitengeza hiki kitu alikua mwanafunzi wa Johannes Kepler



Line segments in the golden ratio

A golden rectangle with longer side a and shorter side b, when placed adjacent to a square with sides of length a, will produce a similar golden rectangle with longer side a + b and shorter side a. This illustrates the relationship {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi }
.
  • List of numbers
  • Irrational numbers

  • ζ(3)
  • √2
  • √3
  • √5
  • φ
  • ψ
  • ρ
  • δS
  • e
  • π
Binary1.1001111000110111011...Decimal1.6180339887498948482...
Hexadecimal1.9E3779B97F4A7C15F39...Continued fraction{\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}
Algebraic form{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}
Infinite series{\displaystyle {\frac {13}{8}}+\sum _{n=0}^{\infty }{\frac {(-1)^{(n+1)}(2n+1)!}{(n+2)!n!4^{(2n+3)}}}}


Two quantities a and b are said to be in the golden ratio φ if

{\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi .}

One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ,

{\displaystyle {\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }}.}

Therefore,

{\displaystyle 1+{\frac {1}{\varphi }}=\varphi .}

Multiplying by φ gives

{\displaystyle \varphi +1=\varphi ^{2}}

which can be rearranged to

{\displaystyle {\varphi }^{2}-\varphi -1=0.}

Using the quadratic formula, two solutions are obtained:

{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }

and

{\displaystyle \varphi ={\frac {1-{\sqrt {5}}}{2}}=-0.6180\,339887\dots }

Because φ is the ratio between positive quantities φ is necessarily positive:

{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
Cc
Wick snowhite Malcom Lumumba lifecoded
 
mkuu wahi utupe maujuzi hapa
 
Nimetoka empty
 
Ingia mtandaoni tafuta fibonacci level,inatumila sana kwenye prediction ya movement kama za charts etc.Watu wa forex wanaitumia sana.
 
Ngwini hapati hata punje hapo.
 
Cookies are required to use this site. You must accept them to continue using the site. Learn more…