full report
Emerging Nuclear Energy Countries | New Nuclear Build Countries - World Nuclear Association
Ripoti yenyewe iliandikwa 2010, lakini wameipitia na ku update kadri mamboyanavyobadilika duniani, last udated ni Feb-2017........
Emerging Nuclear Energy Countries
(Updated February 2017)
- Over 45 countries are actively considering embarking upon nuclear power programs.
- These range from sophisticated economies to developing nations.
- The front runners are UAE, Turkey, Belarus, and Poland.
Nuclear power is planned in over 20 countries which do not currently have it, and under some level of consideration in over 20 more (in a few, consideration is not necessarily at government level). In the following list, links are provided for those countries that are covered by specific country papers where the nuclear power prospects are more fully dealt with:
- In Europe: Italy, Albania, Serbia, Croatia, Portugal, Norway, Poland, Belarus, Estonia, Latvia, Ireland, Turkey.
- In the Middle East and North Africa: Gulf states including UAE, Saudi Arabia, Qatar & Kuwait, Yemen, Israel, Syria, Jordan, Egypt, Tunisia, Libya, Algeria, Morocco, Sudan.
- In west, central and southern Africa: Nigeria, Ghana, Senegal, Kenya, Uganda, Tanzania, Zambia, Namibia.
- In Central and South America: Cuba, Chile, Ecuador, Venezuela, Bolivia, Peru, Paraguay.
- In central and southern Asia: Azerbaijan, Georgia, Kazakhstan, Mongolia, Bangladesh, Sri Lanka.
- In SE Asia: Indonesia, Philippines, Vietnam, Thailand, Laos, Cambodia, Malaysia, Singapore, Myanmar, Australia, New Zealand.
- In east Asia: North Korea.
Despite the large number of these emerging countries, they are not expected to contribute very much to the expansion of nuclear capacity in the foreseeable future – the main growth will come in countries where the technology is already well established. However, in the longer term, the trend to urbanisation in less-developed countries will greatly increase the demand for electricity, and especially that supplied by base-load plants such as nuclear. The pattern of energy demand in these countries will become more like that of Europe, North America and Japan.
Some of the above countries can be classified according to how far their nuclear power programmes or plans have progressed:
- Power reactors under construction: UAE, Belarus.
- Contracts signed, legal and regulatory infrastructure well-developed or developing: Lithuania, Turkey, Bangladesh, Vietnam (but deferred).
- Committed plans, legal and regulatory infrastructure developing: Jordan, Poland, Egypt.
- Well-developed plans but commitment pending: Thailand, Indonesia, Kazakhstan, Saudi Arabia, Chile; or commitment stalled: Italy.
- Developing plans: Israel, Nigeria, Kenya, Laos, Malaysia, Morocco, Algeria.
- Discussion as serious policy option: Namibia, Mongolia, Philippines, Singapore, Albania, Serbia, Croatia, Estonia & Latvia, Libya, Azerbaijan, Sri Lanka, Tunisia, Syria, Qatar, Sudan, Cuba, Venezuela, Bolivia, Paraguay, Peru.
- Officially not a policy option at present: Australia, New Zealand, Portugal, Norway, Ireland, Kuwait, Myanmar, Cambodia, Tanzania, Zambia, Kuwait.
.........
However, by September 2012 the picture was less positive for the leading 14 countries, and the IAEA expected only seven newcomer countries to launch nuclear programs in the near term. It did not name these, but Lithuania, UAE, Turkey, Belarus, Vietnam, Poland, and Bangladesh appear likely candidates. Others had stepped back from commitment, needed more time to set up infrastructure, or did not have credible finance.
One major issue for many countries is the size of their grid system. Many nuclear power plants are larger than the fossil fuel plants they supplement or replace, and it does not make sense to have any generating unit more than about one tenth the capacity of the grid (maybe 15% if there is high reserve capacity). This is so that the plant can be taken offline for refueling or maintenance, or due to unforeseen events. The grid capacity and quality may also be considered regionally, as with Jordan for instance. In many situations, as much investment in the grid may be needed as in the power plant(s).
Kenya sought to evaluate its grid system before considering the generation options.
----article yenyewe ni ndefu sana inaongelea kila nchi ambayo iko advance stage za kuanza process ya nuclear power, kwahivyo nimeruka hadi kwa profile ya EAC... Angalia vile Tanzania na Uganda wamewekewa profile ndogo, kumaanisha other than the initial interest to develope nuclear power, nothing much has happended ever since, therefore nothing much to report on...
.....
Uganda
Uganda's Atomic Energy Bill came into effect in 2008, to regulate the use of ionising radiation and provide a framework to develop nuclear power generation. The government has signed an agreement with IAEA to initiate moves in that direction. Peak demand in 2007 was 428 MWe met mainly from hydro, and projected demand for 2015 is 2000 MWe. Some $500 million is being spent on doubling transmission lines to 3400 km, including links to Kenya and Rwanda.
Kenya
Electricity production in 2014 was 9.26 TWh, 3.3 TWh from hydro, 4 TWh from geothermal, 1.7 TWh from oil. This is generated from 767 MWe of hydro capacity and now 680 MWe of geothermal which will supply about half the demand, as well as some oil and gas and other. In 2016 Kenya's installed electricity generation was 2300 MWe, and the Energy Regulatory Commission plans 6766 MWe capacity by 2020. The 960 MWe Lamu coal-fired plant is expected on line in 2017.
The annual demand growth has reached 7% and on one projection is expected to increase to 15% as the Vision 2030 projects are implemented. Demand is expected to reach 15,000 MWe by 2030, and in March 2015 the Energy Regulatory Commission said installed capacity in 2033 would be 24,674 MWe, allowing significant exports. Of this, 7264 MWe would be geothermal, 5400 MWe coal-fired, 2600 MWe nuclear, 3960 gas turbine and 2180 MWe wind. Another projection has 19,000 MWe on line in 2033 including 4000 MWe nuclear, and a lower one projects 6000 MWe demand in 2030, providing 36 TWh with no nuclear contribution.
In 2010 Kenya's National Economic & Social Council recommended that the country start using nuclear power by 2020 to meet its growing electricity demand. A former Energy Minister was appointed to head a Nuclear Electricity Project Committee which became the Kenya Nuclear Electricity Board (
KNEB) in May 2014, and aims to replace some oil and gas-fired capacity with nuclear power. The KNEB is charged with fast-tracking the development of nuclear electricity generation in Kenya with a mission to promote "safe and secure application of nuclear technology" for sustainable electricity generation and distribution. In 2016 an IAEA integrated regulatory review (IRR) of Kenya’s Radiation Protection Board was undertaken. The goal of having 1000 MWe of nuclear capacity on line by 2025 and 4000 MWe by 2033 has been reaffirmed in 2016.
Coastal sites were being sought, and the project involves conforming plans to IAEA terms, conditions and milestones. The IAEA completed an initial review of plans in March 2011 considering a site on Athi Plains, 50 km from Nairobi, and an IAEA Integrated Nuclear Infrastructure Review (INIR) mission visited in 2015 to advise the KNEB. Its leader said that "Kenya has given thorough consideration to the infrastructure that will be necessary should the country decide to proceed with the development of a national nuclear power programme." Later reports referred to “towns bordering Lake Turkana, the Indian Ocean and Lake Victoria” as potential sites.
The Energy Ministry noted that a South Korean plant would cost about $3.5 billion, but would provide cheaper electricity than some alternatives. Another estimate of the project cost is $9.8 billion.
Kenya Electricity Generation Co. Ltd. (KenGen, 70% state-owned), supplies 80% of the country's power, mostly from hydro to 2013, and aims to double installed capacity to 3000 MWe by 2018, then 4200 MWe in 2022 and increase that to 9000 MWe by 2030 – at least half geothermal. It expects total 2030 Kenya capacity to be almost 18 GWe, with IPPs. It is seeking a partner to produce nuclear power by 2022 to help meet rising demand and diversify from hydropower, which has little potential for expansion.
In September 2015 an agreement was signed by Kenya Nuclear Electricity Board (KNEB) with China General Nuclear Power (CGN) to investigate building a Hualong One reactor in Kenya. The agreement is to enable Kenya to "obtain expertise from China by way of training and skills development, technical support in areas such as site selection for Kenya's nuclear power plants and feasibility studies," according to KNEB. KNEB is conducting a technology assessment including size and water requirements.
In May 2016 Rosatom signed an agreement covering a wide range of areas, including: assistance in the development of a nuclear energy infrastructure in Kenya; basic and applied research; design, construction and operation of nuclear power and research reactors; production and use of radioisotopes in industry, medicine and agriculture; radioactive waste management; and education and training of specialists in the field of nuclear physics and nuclear energy. The two countries will also continue talks on the practical aspects of constructing the first nuclear power plant in Kenya.
In February 2017 the French minister for economy and finance said that France was keen to help Kenya’s nuclear power development.
In August 2016 KNEB signed an agreement with Korea Electric Power Corporation (KEPCO) to cooperate on construction of nuclear power plants.
The Nuclear Electricity Board said in November 2016 that it planned to start building about 1000 MWe of nuclear capacity in 2021, for operation from 2027. Though costing about $5 billion, it would be to reduce the price of electricity. A feasibility study was underway.
Some 280 MWe of geothermal capacity at KenGen’s Olkaria in the Rift Valley came on line early in 2015 and the first 400 MWe of the 1600 MWe Menengai project, expected to cost $24 billion, is being built by the state-owned Geothermal Development Company (
GDC), to come on line in 2016. The US-East Africa Geothermal Partnership (EAGP) was established in 2012 to promote the development of geothermal energy resources and projects in East Africa, including Kenya. UNEP’s African Rift Geothermal Development Facility (
ARGeo) is also involved. Geothermal power from the Rift Valley is prospective, and is being pursued by ARGeo.
Kenya Power (50.1% state-owned) owns and operates most of the electricity transmission and distribution system. A 220 kV link with Uganda is being built. A 400 kV AC, 2000 MWe link of 508 km with Tanzania was funded by the African Development Bank early in 2015, and a 500 kV DC link with Ethiopia is planned for 2017, funded by the World Bank. This will allow the Eastern Africa Power Pool to connect with the Southern Africa Power Pool. Only 30% of the country’s 44 million people have electricity from the grid.
Tanzania
Gross electricity production in 2014 was 6 TWh, 2.6 TWh from hydro, 2.6 TWh from gas and 1 TWh from oil. The government has expressed an intention to investigate the use of nuclear power. In late 2015 the country’s generation capacity was 1246 MWe – 562 MWe hydro, 441 MWe gas and 243 MWe oil. There are imports via transmission links as part of the Eastern Africa Power Pool (EAPP). Overall 24% of the population is serviced by the grid, but in rural areas it is only 7%. A 2015 National Energy Policy is addressing challenges. The country has substantial gas resources.