Ambiele Kiviele
JF-Expert Member
- Dec 29, 2014
- 15,267
- 29,917
Ah ah ah ahHahahah na umande niliokimbia, usitake kuniaibisha hapa
Sent using Jamii Forums mobile app
Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
Ah ah ah ahHahahah na umande niliokimbia, usitake kuniaibisha hapa
Unaniangusha sasa..
Mi naomba ntoke nje ya mada jaman iv safari yetu ya sweeden vp.....Usianguke...kokotoa wewe uliye yaweka hapo...kwa lugha nyepesi tu watauelewa....
Hapa tutaharibu mada za watu tukutane katika uzi sahihi au leoKasema atanilipia Mimi tu...wengine mjitafajkari...
Sijui utaenea kwa Sanduku nikufiche humo?
Ili tusichangie kule wasemavyo wanasayansi kuhusu kitabu kile cha shetani?
Nimeshindwa kuelewa huu mtiririko wako. Hicho kitabu cha la sita ndo kitabu cha shetani?Kitabu cha darasa la sita cha hesabu. Tafuta topic ya hesabu maumbo utaona jinsi ya kuikokotoa pai =3.14 ua 22÷7.
Nimeshindwa kuelewa huu mtiririko wako. Hicho kitabu cha la sita ndo kitabu cha shetani?
Sent using Jamii Forums mobile app
HapanaWewe ni modi wajF?
hahahaakuna maswali mengine, ukituuliza wanawa ccm. ni sawa na kutuchezea mapumbu tu
mkuu unataka kuunda ndege ""?Nitarudi kuielezea inafanyaje kazi...
Huyu mshenzi ndio alitengeza hiki kitu alikua mwanafunzi wa Johannes Kepler
Line segments in the golden ratio
A golden rectangle with longer side a and shorter side b, when placed adjacent to a square with sides of length a, will produce a similar golden rectangle with longer side a + b and shorter side a. This illustrates the relationship {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi }.![]()
- List of numbers
- Irrational numbers
Binary1.1001111000110111011...Decimal1.6180339887498948482...
Hexadecimal1.9E3779B97F4A7C15F39...Continued fraction{\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}Algebraic form{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}
Infinite series{\displaystyle {\frac {13}{8}}+\sum _{n=0}^{\infty }{\frac {(-1)^{(n+1)}(2n+1)!}{(n+2)!n!4^{(2n+3)}}}}![]()
![]()
Two quantities a and b are said to be in the golden ratio φ if
{\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi .}![]()
One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ,
{\displaystyle {\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }}.}![]()
Therefore,
{\displaystyle 1+{\frac {1}{\varphi }}=\varphi .}![]()
Multiplying by φ gives
{\displaystyle \varphi +1=\varphi ^{2}}![]()
which can be rearranged to
{\displaystyle {\varphi }^{2}-\varphi -1=0.}![]()
Using the quadratic formula, two solutions are obtained:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }![]()
and
{\displaystyle \varphi ={\frac {1-{\sqrt {5}}}{2}}=-0.6180\,339887\dots }![]()
Because φ is the ratio between positive quantities φ is necessarily positive:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
Cc
Wick snowhite Malcom Lumumba lifecoded
Hapana mkuu nataka nibadili hiyo golden number iwe salio la benkimkuu unataka kuunda ndege ""?
hahaaa unachekesha nini bwege weweZitoe zijumlishe hafu zizidishe hafu zijumlishe hafu zitoe tena aaahaha
eti mimi nachekesha [emoji23][emoji23]
hahaa capt bwanaHapa sawasawa!! Hongera,hujaleta mbwembwe kama hao manguli uchwara!kudos.
Aiseee sasa siuta sababisha bank waende BOT kuomba mkopo mwingine" maana acc.yako itakomba pesa za wateja wote wa hiyo bank" maana sio kwa idadi hzo za nambaHapana mkuu nataka nibadili hiyo golden number iwe salio la benki
Ni wachawi, na uchawi huwa hauwi wazi.Conspiracy tu hizo japo dunia inaendeshwa kwa usiri
Son hapa mbn kama umeongeza tatizo juu ya tatizo!!Nitarudi kuielezea inafanyaje kazi...
Huyu mshenzi ndio alitengeza hiki kitu alikua mwanafunzi wa Johannes Kepler
Line segments in the golden ratio
A golden rectangle with longer side a and shorter side b, when placed adjacent to a square with sides of length a, will produce a similar golden rectangle with longer side a + b and shorter side a. This illustrates the relationship {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi }.![]()
- List of numbers
- Irrational numbers
Binary1.1001111000110111011...Decimal1.6180339887498948482...
Hexadecimal1.9E3779B97F4A7C15F39...Continued fraction{\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}Algebraic form{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}
Infinite series{\displaystyle {\frac {13}{8}}+\sum _{n=0}^{\infty }{\frac {(-1)^{(n+1)}(2n+1)!}{(n+2)!n!4^{(2n+3)}}}}![]()
![]()
Two quantities a and b are said to be in the golden ratio φ if
{\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi .}![]()
One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ,
{\displaystyle {\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }}.}![]()
Therefore,
{\displaystyle 1+{\frac {1}{\varphi }}=\varphi .}![]()
Multiplying by φ gives
{\displaystyle \varphi +1=\varphi ^{2}}![]()
which can be rearranged to
{\displaystyle {\varphi }^{2}-\varphi -1=0.}![]()
Using the quadratic formula, two solutions are obtained:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }![]()
and
{\displaystyle \varphi ={\frac {1-{\sqrt {5}}}{2}}=-0.6180\,339887\dots }![]()
Because φ is the ratio between positive quantities φ is necessarily positive:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
Cc
Wick snowhite Malcom Lumumba lifecoded