Baba Swalehe
JF-Expert Member
- Jun 6, 2017
- 20,178
- 39,641
Zitoe zijumlishe hafu zizidishe hafu zijumlishe hafu zitoe tena aaahahaMkuu unamaanisha product utakayokuwa umetengeneza au unamaanisha jibu baada ya kutoa na kujumlisha namba hizo?
SafiZitoe zijumlishe hafu zizidishe hafu zijumlishe hafu zitoe tena aaahaha
eti mimi nachekesha [emoji23][emoji23]
Hapa sawasawa!! Hongera,hujaleta mbwembwe kama hao manguli uchwara!kudos.Simply tu ni kwamba aliweka formula kwa ajili ya kuipata hiyo namba ni Leonardo Fibonnaci... Na aliipata kwa series ambayo inaanza na 1,1,2,3,5,8,13,21,34,55,89,......
Simply tu ni kwamba ukijumlisha namba mbili za nyuma basi unaipata inayofuatia mbele.
Na katika hiyo Fibonnaci levels zipo ratios nyingi lakini aijajua ni kwanini hiyo 1.61 ndo wanaichukulia kama golden ratio...
Jinsi inavyopatikana, katika huyo series ambayo nmeipost hapo, ni unachukua namba mbili zilizofuatana, ya mbele unagawanya na ya nyuma yake. Namba zozote utakazochagua majibu yatakiwa ni approximate yaleyale.
Unaweza kujaribu by your own...
Sent using Jamii Forums mobile app
Mkuu kifupi ukitaka kuijua hiyo golden ratio au zile namba za Tesla itakubidi usome na uangalie documentary nyingi sana ambazo ni za positive way ili uweze ku-crack hizo code muda huo wote utakufanya uwe pia unatoa positive results zitakazo kupeleka kwenye kufikia baadhi ya mafanikio.
Muda huo wote utakuwa unapuuzia mambo ya kijinga na kuwa na ratiba muhimu tu and in other way IQ itaongezeka tu na kufika mafanikio bila kuja kuijua hiyo ratio
Huwa hizi mambo nazichukulia kama vile mtu akikwambia soma vitabu uongeze uelewa so hata wewe ukifanikiwa utasema tu watu waijue hiyo ratio na wakikuuliza uwafafanulie hutaweza kwa sababu hata Wewe huijui
Huwa zinaongeza chachu ya utafutaji tu
Nilisoma kitabu flan walisema ni namba ya uumbaji. Walitoa mifano kuwa hata baadhi ya viungo vyetu vinahiyo namba ktk urefu( baada ya hesabu fulani).
Kitabu gani?Ili tusichangie kule wasemavyo wanasayansi kuhusu kitabu kile cha shetani?
Boss sijakuelewa,Nitarudi kuielezea inafanyaje kazi...
Huyu mshenzi ndio alitengeza hiki kitu alikua mwanafunzi wa Johannes Kepler
Line segments in the golden ratio
A golden rectangle with longer side a and shorter side b, when placed adjacent to a square with sides of length a, will produce a similar golden rectangle with longer side a + b and shorter side a. This illustrates the relationship {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi }.
- List of numbers
- Irrational numbers
Binary1.1001111000110111011...Decimal1.6180339887498948482...
Hexadecimal1.9E3779B97F4A7C15F39...Continued fraction{\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}Algebraic form{\displaystyle {\frac {1+{\sqrt {5}}}{2}}} Infinite series{\displaystyle {\frac {13}{8}}+\sum _{n=0}^{\infty }{\frac {(-1)^{(n+1)}(2n+1)!}{(n+2)!n!4^{(2n+3)}}}}
Two quantities a and b are said to be in the golden ratio φ if
{\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi .}
One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ,
{\displaystyle {\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }}.}
Therefore,
{\displaystyle 1+{\frac {1}{\varphi }}=\varphi .}
Multiplying by φ gives
{\displaystyle \varphi +1=\varphi ^{2}}
which can be rearranged to
{\displaystyle {\varphi }^{2}-\varphi -1=0.}
Using the quadratic formula, two solutions are obtained:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
and
{\displaystyle \varphi ={\frac {1-{\sqrt {5}}}{2}}=-0.6180\,339887\dots }
Because φ is the ratio between positive quantities φ is necessarily positive:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
Cc
Wick snowhite Malcom Lumumba lifecoded
Kamsaidie kukotoa hayo manamba aelewa...Na msaidiaje?
Kamsaidie kukotoa hayo manamba aelewa...
Unaniangusha sasa..Hahahah na umande niliokimbia, usitake kuniaibisha hapa