Namba hii ina maana gani? 1.6180339887.

Namba hii ina maana gani? 1.6180339887.

Simply tu ni kwamba aliweka formula kwa ajili ya kuipata hiyo namba ni Leonardo Fibonnaci... Na aliipata kwa series ambayo inaanza na 1,1,2,3,5,8,13,21,34,55,89,......

Simply tu ni kwamba ukijumlisha namba mbili za nyuma basi unaipata inayofuatia mbele.

Na katika hiyo Fibonnaci levels zipo ratios nyingi lakini aijajua ni kwanini hiyo 1.61 ndo wanaichukulia kama golden ratio...

Jinsi inavyopatikana, katika huyo series ambayo nmeipost hapo, ni unachukua namba mbili zilizofuatana, ya mbele unagawanya na ya nyuma yake. Namba zozote utakazochagua majibu yatakiwa ni approximate yaleyale.

Unaweza kujaribu by your own...

Sent using Jamii Forums mobile app
 
Simply tu ni kwamba aliweka formula kwa ajili ya kuipata hiyo namba ni Leonardo Fibonnaci... Na aliipata kwa series ambayo inaanza na 1,1,2,3,5,8,13,21,34,55,89,......

Simply tu ni kwamba ukijumlisha namba mbili za nyuma basi unaipata inayofuatia mbele.

Na katika hiyo Fibonnaci levels zipo ratios nyingi lakini aijajua ni kwanini hiyo 1.61 ndo wanaichukulia kama golden ratio...

Jinsi inavyopatikana, katika huyo series ambayo nmeipost hapo, ni unachukua namba mbili zilizofuatana, ya mbele unagawanya na ya nyuma yake. Namba zozote utakazochagua majibu yatakiwa ni approximate yaleyale.

Unaweza kujaribu by your own...

Sent using Jamii Forums mobile app
Hapa sawasawa!! Hongera,hujaleta mbwembwe kama hao manguli uchwara!kudos.
 
Mkuu kifupi ukitaka kuijua hiyo golden ratio au zile namba za Tesla itakubidi usome na uangalie documentary nyingi sana ambazo ni za positive way ili uweze ku-crack hizo code muda huo wote utakufanya uwe pia unatoa positive results zitakazo kupeleka kwenye kufikia baadhi ya mafanikio.

Muda huo wote utakuwa unapuuzia mambo ya kijinga na kuwa na ratiba muhimu tu and in other way IQ itaongezeka tu na kufika mafanikio bila kuja kuijua hiyo ratio

Huwa hizi mambo nazichukulia kama vile mtu akikwambia soma vitabu uongeze uelewa so hata wewe ukifanikiwa utasema tu watu waijue hiyo ratio na wakikuuliza uwafafanulie hutaweza kwa sababu hata Wewe huijui

Huwa zinaongeza chachu ya utafutaji tu

Ili tusichangie kule wasemavyo wanasayansi kuhusu kitabu kile cha shetani?
 
Nitarudi kuielezea inafanyaje kazi...
Huyu mshenzi ndio alitengeza hiki kitu alikua mwanafunzi wa Johannes Kepler



Line segments in the golden ratio

A golden rectangle with longer side a and shorter side b, when placed adjacent to a square with sides of length a, will produce a similar golden rectangle with longer side a + b and shorter side a. This illustrates the relationship {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi }
94b17cee919ba893572e106101885e9947e2d8c3
.
  • List of numbers
  • Irrational numbers

  • ζ(3)
  • √2
  • √3
  • √5
  • φ
  • ψ
  • ρ
  • δS
  • e
  • π
Binary1.1001111000110111011...Decimal1.6180339887498948482...
Hexadecimal1.9E3779B97F4A7C15F39...Continued fraction{\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}
7fbad6d8c8d284ea5391a39db22c14858d696c1f
Algebraic form{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}
2102ba6ed802cb9a98dc1a0fc1ac99b1a03b4047
Infinite series{\displaystyle {\frac {13}{8}}+\sum _{n=0}^{\infty }{\frac {(-1)^{(n+1)}(2n+1)!}{(n+2)!n!4^{(2n+3)}}}}
9402466d8bf07ab67260f520c5360d36020cef34


Two quantities a and b are said to be in the golden ratio φ if

{\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi .}
cf7e51356f54a831db021e7e46922c778bbd91c0

One method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ,

{\displaystyle {\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }}.}
60bdf40e1de260ce8adbfc22d4301b5c52699e3c

Therefore,

{\displaystyle 1+{\frac {1}{\varphi }}=\varphi .}
73516b60e9391da6113e1df0eab685d732451cc2

Multiplying by φ gives

{\displaystyle \varphi +1=\varphi ^{2}}
7452e786dfd2a1a3e0cdc7cf38b508d0ccb43796

which can be rearranged to

{\displaystyle {\varphi }^{2}-\varphi -1=0.}
909a0da5459476692cb089d9b951d4284387e927

Using the quadratic formula, two solutions are obtained:

{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
1c9b7ed65783d1cdb2dfa7abd1361b1c1553bbe6

and

{\displaystyle \varphi ={\frac {1-{\sqrt {5}}}{2}}=-0.6180\,339887\dots }
bcee7ad3a39865b95e89b8aa7fdb15afa913e750

Because φ is the ratio between positive quantities φ is necessarily positive:

{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
Cc
Wick snowhite Malcom Lumumba lifecoded
Boss sijakuelewa,

Sent using Jamii Forums mobile app
 
Back
Top Bottom