Nitarudi kuielezea inafanyaje kazi...
Huyu mshenzi ndio alitengeza hiki kitu alikua mwanafunzi wa
Johannes Kepler
Line segments in the golden ratio

A golden rectangle with longer side
a and shorter side
b, when placed adjacent to a square with sides of length
a, will produce a similar golden rectangle with longer side
a + b and shorter side
a. This illustrates the relationship {\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}\equiv \varphi }
.
- List of numbers
- Irrational numbers
- ζ(3)
- √2
- √3
- √5
- φ
- ψ
- ρ
- δS
- e
- π
Binary1.1001111000110111011...Decimal1.6180339887498948482...
Hexadecimal1.9E3779B97F4A7C15F39...Continued fraction{\displaystyle 1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}
Algebraic form{\displaystyle {\frac {1+{\sqrt {5}}}{2}}}
Infinite series{\displaystyle {\frac {13}{8}}+\sum _{n=0}^{\infty }{\frac {(-1)^{(n+1)}(2n+1)!}{(n+2)!n!4^{(2n+3)}}}}
Two quantities
a and
b are said to be in the
golden ratio φ if
{\displaystyle {\frac {a+b}{a}}={\frac {a}{b}}=\varphi .}
One method for finding the value of
φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/
φ,
{\displaystyle {\frac {a+b}{a}}=1+{\frac {b}{a}}=1+{\frac {1}{\varphi }}.}
Therefore,
{\displaystyle 1+{\frac {1}{\varphi }}=\varphi .}
Multiplying by
φ gives
{\displaystyle \varphi +1=\varphi ^{2}}
which can be rearranged to
{\displaystyle {\varphi }^{2}-\varphi -1=0.}
Using the quadratic formula, two solutions are obtained:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
and
{\displaystyle \varphi ={\frac {1-{\sqrt {5}}}{2}}=-0.6180\,339887\dots }
Because
φ is the ratio between positive quantities
φ is necessarily positive:
{\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}=1.61803\,39887\dots }
Cc
Wick snowhite Malcom Lumumba lifecoded