Follow along with the video below to see how to install our site as a web app on your home screen.
Note: This feature may not be available in some browsers.
Proof hata ukiiona utaijua? Proof isiyo na mashaka unayoitaka ikoje?
Wewe unaweza kutoa proof isiyo mashaka kwamba Mungu yupo?
Huja claim kwamba Mungu yupo?
Mungu huwezi kumuelewa kwa akili za kiutu hata nikikuelezea, nikikwambia hivyo utakubali?
Proof yoyote inayoanza na "Let" inaanza na assumption, na hivyo haiwezi kukosa mashaka.Mfano wa logical, scientific & mathematical proof isiyo na mashaka ni kama hii: Proof isiyo na mashaka
This theorem is stronger than the first incompleteness theorem because the statement constructed in the first incompleteness theorem does not directly express the consistency of the system. The proof of the second incompleteness theorem is obtained by formalizing the proof of the first incompleteness theorem within the system F itself.Second Incompleteness Theorem: "Assume F is a consistent formalized system which contains elementary arithmetic. Then {\displaystyle F\not \vdash {\text{Cons}}(F)}." (Raatikainen 2015)![]()
Huelewi kwamba mungu yupo/hayupo ni pande mbili za swali lile lile?Interest yangu ni kutaka kujua kwa uhakika kuwa Mungu hayupo, according to the topic. Labda ugeuze title basi na kuandika Mungu yupo, then discussion ianzie hapo. Nakushangaa sana unataka watu waamini au wakubali kuwa Mungu hayupo bila concrete proof.
Proof yoyote inayoanza na "Let" inaanza na assumption, na hivyo haiwezi kukosa mashaka.
Hakuna proof inayokosa mashaka, soma Godel's incompleteness Theorems uelewe zaidi haya mambo.
Gödel's incompleteness theorems - Wikipedia
en.wikipedia.org
First Incompleteness Theorem: "Any consistent formal system F within which a certain amount of elementary arithmetic can be carried out is incomplete; i.e., there are statements of the language of F which can neither be proved nor disproved in F." (Raatikainen 2015)
Second incompleteness theorem
For each formal system F containing basic arithmetic, it is possible to canonically define a formula Cons(F) expressing the consistency of F. This formula expresses the property that "there does not exist a natural number coding a formal derivation within the system F whose conclusion is a syntactic contradiction." The syntactic contradiction is often taken to be "0=1", in which case Cons(F) states "there is no natural number that codes a derivation of '0=1' from the axioms of F."
Gödel's second incompleteness theorem shows that, under general assumptions, this canonical consistency statement Cons(F) will not be provable in F. The theorem first appeared as "Theorem XI" in Gödel's 1931 paper "On Formally Undecidable Propositions in Principia Mathematica and Related Systems I". In the following statement, the term "formalized system" also includes an assumption that F is effectively axiomatized.
This theorem is stronger than the first incompleteness theorem because the statement constructed in the first incompleteness theorem does not directly express the consistency of the system. The proof of the second incompleteness theorem is obtained by formalizing the proof of the first incompleteness theorem within the system F itself.
Huelewi kwamba mungu yupo/hayupo ni pande mbili za swali lile lile?
Umeonesha hata nature ya proof huielewi kwa kutoa mfano wako wa proof isiyo na mashaka, wakati proof inaanza na assumption.
Unaelewa hata unachotaka wewe mwenyewe ni nini?
Huelewi kwamba mungu yupo/hayupo ni pande mbili za swali lile lile?
Umeonesha hata nature ya proof huielewi kwa kutoa mfano wako wa proof isiyo na mashaka, wakati proof inaanza na assumption.
Unaelewa hata unachotaka wewe mwenyewe ni nini?
Proof imeanza kwa assumption, sihitaji kwenda mbali zaidi ya hapo.
Hujathibitisha Mungu yupo.
Unaweza kuonesha alama za vidole za mwizi ambaye hayupo?Ninachotaka ni wewe kuprove Mungu hayupo. Acha kuzunguka. Sasa unasema existence na kutokuexist ni kitu kimoja!
How is "let" not an assumption?Akili yako inakuambia "Let" ni assumption? Let x = c is an assumption? Nimekuacha ujiwekee ushahidi wa ujinga wako then nikurarue.
Unaweza kuonesha alama za vidole za mwizi ambaye hayupo?
Kati ya anayesema mwizi yupo, na anayesema mwizi hayupo, nani anaweza kuonesha alama za vidole za mwizi?
Umeniomba proofs, nimekupa proof ya entropy na ya suffering.
Wewe hujatoa hata moja.
Mpaka hapo wewe ndiye unazunguka, nimekupa proofs mbili, wewe hujatoa hata moja.
Kuniambia kwamba nimetumia entropy vibaya hakufanyi kuwa nimetumia entropy vibaya kweli.Nimekuambia umetumia entropy vibaya, unakubali? Nimejibu mara kadhaa kuhusiana na hizo proofs zako 2, tena kwa kuquote, unaweza kurudi nyuma ukaangalia ni namna gani proofs zako zina flaws.
How is "let" not an assumption?
Someone is asking you to accept by faith that x=c. How is that not an assumption? How do you know that x=c ?
Kuniambia kwamba nimetumia entropy vibaya hakufanyi kuwa nimetumia entropy vibaya kweli.
Nimejibu pingamizi lako mpaka kwa mfano wa bank accounts zisizopo kuwa na zero dollars, hujajibu pingamizi langu.
Unarudia kusema jambo ambalo nishalipinga kwa malelezo.
Hilo linaniambia kwamba, ama:-
1. Umesoma pingamizi hujalielewa.
Au.
2. Umesoma pingamizi na kulielewa, ila umekwepa kulijibu.
Yote mawili yananiambia huna hoja ya kunijibu.
Kuniambia kwamba nimetumia entropy vibaya hakufanyi kuwa nimetumia entropy vibaya kweli.
Nimejibu pingamizi lako mpaka kwa mfano wa bank accounts zisizopo kuwa na zero dollars, hujajibu pingamizi langu.
Unarudia kusema jambo ambalo nishalipinga kwa maelezo.
Hilo linaniambia kwamba, ama:-
1. Umesoma pingamizi hujalielewa.
Au.
2. Umesoma pingamizi na kulielewa, ila umekwepa kulijibu.
Yote mawili yananiambia huna hoja ya kunijibu.
In science or mathematics, tunaposema let x = c, it means x assumes the same quality as c. Mfano, kwenye computer programming kama C/C++, naweza kudeclare variable kama hivi x = 2, when I print x, I should get 2 and not otherwise.
Hiyo siyo assumption, ni variable declaration.